教材:离散数学 第二版 屈婉玲、耿素云、张立昂
9.1 二元运算及其性质
(原文档高清截图在最后,已排版)
1、设集合S,函数 f: S×S→S 称为S上的二元运算,简称二元运算。
2、2、一个运算为S上的二元运算,需要符合如下两点:
(1)集合S中的任意两个元素都能运算,且结果唯一;
(2)(1)中的任何运算结果都属于S,即S对该运算封闭。
例:
(1)自然数集N上的加法和乘法都是N上的二元运算,而减法和除法不是。因为减法的结果可能出现零、负数,而除法的结果可能是小数。
(2)整数集Z上的加减和乘法都是Z上的二元运算,而除法不是,原因同(1)。
(3)非零实数集R上的乘除都是R上的二元运算,而加减不是。因为非零实数加减可以产生零。
(4)对n(n≥2)阶实矩阵Mn( R ):矩阵加减和矩阵乘法都是Mn( R )上的二元运算。
(5)对集合S,初级并、初级交、相对补、对称差都是幂集P(S)上的二元运算。记SS(第二个S上标)为S上所有函数的集合,对建立在S上的任意两个函数作的复合运算都是SS上的二元运算。
(集合