【梳理】离散数学 第14章 图的基本概念 14.3 图的连通性(未完待续)

本文介绍了无向图的连通性概念,包括顶点的连通、连通图、连通分支、点割集和边割集、点连通度和边连通度等。讨论了图的点和边割除后对连通性的影响,并引入了有向图的连通性定义,如弱连通图、单向连通图和强连通图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后

未完待续

14.3 图的连通性

1、设无向图G(V, E),若u,v∈V之间存在通路,就称u,v是连通的,记作u ~ v。规定:对任意v∈V,v ~ v。如果无向图G是平凡图(只含一个顶点的图)或者G中任意两个顶点都是连通的,则G为连通图,否则为非连通图。无向图中,顶点之间的连通关系 ~ 是等价关系:具有自反性、对称性、传递性。

2、设无向图G(V, E),Vi是V关于顶点连通关系 ~ 的一个等价类,称导出子图G[Vi]为G的一个连通分支(连通分量)。简单来说,一个图被分成几个小块,每个小块是连通的,但小块之间不联通,这些小块称为连通分支。一个孤立点也是一个联通分支。G的连通分支数记作p(G)。若G为连通图,p(G) = 1;否则,p(G) > 1。所有的n阶无向图中,n阶零图(不含任何边)是连通分支最多的,数量达到p(Nn) = n。

3、设无向图G的任意两个顶点u ~ v,u、v之间长度最短的通路称为u、v之间的短程线,短程线的长度称作u、v的距离,记作d(u, v)(和顶点v的度数d(v)要区分开)。当u、v不连通时,d(u, v) = ∞。
距离具有以下性质:任意u,v,w∈G,
(1)d(u, v)≥0,仅u = v时等号成立。
(2&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值