教材:《离散数学》第2版 屈婉玲 耿素云 张立昂 高等教育出版社
源文档高清截图在最后
未完待续
14.3 图的连通性
1、设无向图G(V, E),若u,v∈V之间存在通路,就称u,v是连通的,记作u ~ v。规定:对任意v∈V,v ~ v。如果无向图G是平凡图(只含一个顶点的图)或者G中任意两个顶点都是连通的,则G为连通图,否则为非连通图。无向图中,顶点之间的连通关系 ~ 是等价关系:具有自反性、对称性、传递性。
2、设无向图G(V, E),Vi是V关于顶点连通关系 ~ 的一个等价类,称导出子图G[Vi]为G的一个连通分支(连通分量)。简单来说,一个图被分成几个小块,每个小块是连通的,但小块之间不联通,这些小块称为连通分支。一个孤立点也是一个联通分支。G的连通分支数记作p(G)。若G为连通图,p(G) = 1;否则,p(G) > 1。所有的n阶无向图中,n阶零图(不含任何边)是连通分支最多的,数量达到p(Nn) = n。
3、设无向图G的任意两个顶点u ~ v,u、v之间长度最短的通路称为u、v之间的短程线,短程线的长度称作u、v的距离,记作d(u, v)(和顶点v的度数d(v)要区分开)。当u、v不连通时,d(u, v) = ∞。
距离具有以下性质:任意u,v,w∈G,
(1)d(u, v)≥0,仅u = v时等号成立。
(2&