【2020/07/16修订】概率论与数理统计(电子科技大学) 知识梳理 · 第一版(1到8章 · 度盘)

概率论与数理统计

知 识 梳 理

(第一版)

建议先修课程:高等数学(微积分)
配套课程:
1、慕课(MOOC):概率论与数理统计(电子科技大学)
2、教材:概率论与数理统计 电子科技大学应用数学学院 徐全智、吕恕 主编 高等教育出版社
参考书目:
1、概率论与数理统计 第四版 浙江大学 盛骤、谢式千、潘承毅 编 高等教育出版社
2、概率论与数理统计 韩旭里 谢永钦 复旦大学出版社
3、概率论与数理统计 陈希孺 中国科学技术大学出版社
最后修订:2020-07-16。

目 录

修订内容 1
一 概率论的基本概念 2
二 随机变量的分布 4
三 多维随机变量 8
四 随机变量的数字特征 14
五 大数定律和中心极限定理 18
六 数理统计的基本概念 21
七 参数估计 27
八 假设检验 32

修订内容
第一版:
修订日期:2020-07-16


链接:https://pan.baidu.com/s/1mskZS2zmBUxZaIUll_dt5g
提取码:x5ms


一 概率论的基本概念
1、我们把生活中研究的各种现象分为两类:一类是确定性的,它们的结果可以在事前准确预测;一类是非确定性的(随机现象),具有事前不可预言性:在相同条件下重复实验,未必取得相同结果,或者根据过去的状态,无法预测将来的情况。

2、随机现象也是有规律可循的。在该现象大量发生时,其固有规律将逐渐清晰起来。这种固有规律称为统计规律性。概率论与数理统计是研究随机现象的统计规律性的一门学科。

3、随机试验的特点:
(1)可重复性。在相同条件下,可以重复进行。
(2)结果可知性。可以确定有哪些结果是可能发生的。如果我们不清楚随机试验到底可能发生哪些结果,研究很快就会无法进行下去。
(3)不可预言性。试验之前不能保证准确预测出任意一次实验的结果。

4、进行随机试验时,随机事件的范围不是随意划定的,而是要根据试验的目的来确定。不在研究范围内的,不视为(要研究的)随机事件。例如:某节课上要随机点人回答问题,“点到同学S”(S是本班的任意一个同学)为一个随机事件,而不将“计算机故障,无法启动随机点名程序”记为随机事件。

5、随机试验中,一定发生的和一定不发生的,分别称为必然事件和不可能事件,分别记为S(或Ω)和∅。

6、基本事件,是指一次实验中至少发生一个的最简单(不可再分)的一组事件。由若干基本事件组合而成的事件,称为复合事件。

7、每个基本事件都可以用包含一个元素的单点集ωi(i∈Z)来表示。所有单点集的并集称为样本空间Ω。样本空间的每一个元素称为样本点。复合事件对应样本空间的子集,必然事件和不可能事件分别对应样本空间Ω和空集∅。事件A发生,当且仅当A的一个样本点出现。

8、如果事件A发生意味着事件B肯定发生,则称事件B包含事件A,或者A是B的子事件,记作。对任意事件A,均有。如果A、B互相包含,则称事件A、B相同,记为A = B。

9、A和B的和事件记为A∪B,代表A或B至少发生一个。有限个或无限个事件的和事件分别可记作、。

10、A和B的积事件记为A∩B或AB,代表A和B同时发生。有限个或无限个事件的积事件分别可记作、。

11、若AB = ∅,称A、B为互不相容或互斥事件,即任何一次实验中A、B不可能同时发生。同一试验的基本事件之间都是互斥事件。一个事件组A1、A2、……、An中任意两个互不相容,称此事件组互不相容。

12、在AB = ∅的条件下,如果A∪B = Ω,称A、B互为对立事件,也称逆事件。

13、事件A发生且B不发生,称为A与B的差事件,记作A – B,也记作。

14、事件A的逆事件记为,等价表述为:A不发生。

15、事件本身可以看成集合,随机事件的运算定律与相应的集合的运算定律一一对应。

16、频率的定义:。
nA是A事件发生的次数(频数),n是试验次数。fn(A)是A在n次试验中发生的频率。频率的取值范围是[0, 1],必然事件和不可能事件的频率分别为1和0。一组不相容事件的频率为这一组事件中每个事件的频率之和。在一定条件下(一般都是试验次数很多时),频率才趋于稳定,这个稳定值称为概率。概率是刻画随机事件发生的可能性大小的数量指标。

17、概率的公理化定义:设随机试验的样本空间为S。对n个事件{An},如果P(A)满足:
非负性 P(A)≥0
规范性 P(S) = 1
可列可加性
则称P(A)为事件A的概率,亦称概率测度。
概率的公理化定义是科学的公理化结构:
(1)无矛盾。该结构的所有条件均不互相矛盾。
(2)完备性。概率的其它性质均可由结构中已有的条件推出。
该定义具有数学的基本特征——高度的抽象性和严密的逻辑性。该定义的提出,标志着概率论与数理统计成为了建立在严格逻辑推理之上的数学学科。

18、如果,则有
P(A – B) = P(A) – P(B)
证明略。

19、概率的加法公式是:
P(A∪B) = P(A) + P(B) – P(AB)
可以画韦恩图来理解:减去的项P(AB)在进行运算P(A) + P(B)的时候被多加了一次,正好是韦恩图中两个事件的重叠部分。
根据容斥原理可以将该公式推广到多个事件的概率的加法公式。
容斥原理 设有穷集S,n个性质分别为P1,P2,……,Pn。S中的元素具有或不具有性质Pi。
若Ai表示S中具有性质Pi的元素构成的子集,则同时不具有全部性质P1,P2,……,Pn的元素数为

S中至少具有某种性质的元素数为

用数学归纳法可以完成证明。

20、古典概型满足:(1)基本事件仅有有限个。(2)每个基本事件发生的可能性相等。由古典概型确定的事件发生的概率,称为古典概率。

21、设样本空间Ω可以用欧几里得空间的子集S表示,且S及其全体子集A均可用几何测度(长度、面积、体积等)μ度量,称度量值之比为几何概率。对应的模型称为几何概型。几何概型要求样本点在样本空间中均匀分布。

22、已知事件B发生的条件下,事件A发生的可能性的客观度量称为条件概率,记作P(A|B)。计算公式:
其中P(B) > 0
本质上说,利用该公式计算条件概率,是把限定条件当成了整个样本空间来进行无条件下的计算。

23、一般有。

24、由条件概率的计算公式可以直接得到概率乘法公式

使用此公式求解两个事件A、B同时发生的概率时,必须已知:其中一个事件发生的概率,以及在该事件已经发生的条件下,发生另一个事件的概率。
利用数学归纳法或直接利用这两条公式,易将概率乘法公式推广到n个事件的情形:

25、设Ω为随机试验的样本空间,,一组两两不相交且并集为Ω的事件B1、B2、……、Bn。则这组事件为Ω的一个有限划分。用概率的可加性和概率乘法公式,容易推出全概率公式

使用此公式求解一个事件A发生的概率时,必须已知:A与一系列互斥事件Bi,i = 1,2,……,n同时发生的概率,且这一系列事件Bi是完备的():其它事件必定能使用这一系列事件Bi来表示。
说白了就是:用n次概率乘法公式,把事件A与互斥的这些条件中的每一个条件同时发生的概率一同求出来,再相加。

画出韦恩图。已知在各个互斥且完备的条件下A发生的概率,可以看出全概率公式的两端分别对应:图中A区域的总面积,和A在一系列事件Bi对应的区域中占有的面积之和(总面积为1,对应概率最大为100 %)。

26、设Ω为随机试验的样本空间,,Ω的一个有限划分B1、B2、……、Bn,且P(Bi) > 0,i = 1,2,……,n。则有贝叶斯公式

刻画在事件A已发生的条件下,某个原因Bj导致事件A发生的概率。该公式可由概率乘法公式和全概率公式直接推导得到。贝叶斯公式右端的分子和分母分别对应:上图中某事件Bj对应的区域中属于A的面积,和A区域的总面积。

27、设试验E的两个事件A、B,如果满足
P(A|B) = P(A)或P(B|A) = P(B)或P(AB) = P(A)P(B)
则称事件A与B相互独立。∅、Ω与任意事件相互独立。另外,要区分事件的相互独立与互不相容(AB = ∅,或P(A∪B) = P(A) + P(B))。互不相容不涉及概率的计算,而事件的独立性是用概率本身定义的。由概率的加法公式
P(A∪B) = P(A) + P(B) – P(AB)
可以看出,如果事件A、B既相互独立又互不相容,则说明A、B其中之一概率为0。但概率为0的事件不一定是空事件∅。换言之,如果事件A或B发生的概率都不为0,那么独立和互斥有这样一层关系:互斥不独立,独立不互斥(相容不独立,独立不相容)。
由事件独立的定义中的P(A|B) = P(A)或P(B|A) = P(B)可以看出:两个事件A、B独立,则意味着一个事件是否发生对另一个事件的发生概率没有影响。

28、若A、B相互独立,则也相互独立。推广到n个事件的情形:
设试验E有n个事件A1、A2、……、An。
若对任意的s(2≤s≤n)以及1≤i1 < i2 < …… < is≤n,都有

则称事件A1、A2、……、An相互独立。
若对一切1≤i1 < i2≤n,都有

则称事件A1、A2、……、An两两独立。可见,n个事件相互独立作为结论要强于两两独立。n个事件相互独立,意味着其中任意k个事件是否发生,对剩下的(n – k)个事件中任意个事件同时发生的概率都没有影响;而n个事件两两独立,仅意味着其中一个事件是否发生,对剩下的每一个事件发生的概率没有影响。

29、随机事件A与B相互独立,C是B的子集。但A和C不一定相互独立。

二 随机变量的分布
1、设试验E的样本空间为Ω。对每个样本点ω∈Ω,总有唯一实数X(ω)对应,且对于任意实数x,事件{ω | X(ω)≤x}都有确定的概率,则称X(ω)为随机变量(random variable),简记为X。
随机变量X可以理解为从样本空间Ω到实数集R的一个映射。
随机变量在不同的条件下由于偶然因素影响,其可能取各种随机变量不同的值,具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,所以此种变量称为随机变量。简单说成:
随机变量,是在任意指定的一个实数范围内能取到实数值的概率都可以确定的变量。
引进随机变量将随机试验数量化,是对随机现象进行量化分析的重要手段,优越性体现在:
(1)将样本空间变量化、数值化(从样本空间到实数集的映射);
(2)可以借助现代数学工具更好地描述、处理、解决随机问题。

2、设X是样本空间Ω上的随机变量,x是任意实数,称函数
F(x) = P{X≤x} = P{ω | X(ω)≤x}
为随机变量X的分布函数,有时也写作FX(x)。
对分布函数F(x)的理解:
(1)表示事件“随机点X落在(–∞,x]”的概率。
(2)增量ΔF(x) = F(x + Δx) – F(x) = P{x < X≤x + Δx}是事件“随机点X落在(x,x + Δx]”的概率。
(3)F(x)点点有定义,即F(x)的定义域是整个实数轴 (–∞,+∞)。
(4)根据概率的定义,分布函数属于概率。
总之,随机变量的分布函数表示的正是随机变量在限定范围内取值的概率。

3、分布函数的性质:
(1)单调不减:若x1 < x2,则F(x1)≤F(x2)。
(2)有界:0≤F(x)≤1,且,。
(3)右连续:。
注:P{X = x} = F(x) – F(x – 0)。
如果某个函数满足上述三条性质,那么它是某个随机变量的分布函数。可借助这些性质用于:确定一个函数是否为分布函数,或求解分布函数。
有的教材将分布函数定义为F(x) = P{X < x},并令其左连续。但本指导及配套课程统一采用右连续。这种记法使得在使用分布函数求诸如(–∞,x]这种左开右闭区间的概率时,取极限符号不需出现。

4、分布函数的计算方法(定义法计算):
因为,由概率的可列可加性:

5、如果随机变量X可以取的值的个数是有限个(可数无穷个),则称其为离散型随机变量。否则称为连续型随机变量。本课程中,只讨论这两种随机变量。
离散型随机变量的所有可能的取值一般写成更方便的分布律的形式。分布律可以用表达式直接描述,也可以列成表格。例如:pn = P{X = xn},n = 1,2,3,……

分布律必须满足:
(1)pn≥0;(2)∑pn = 1。
分布律和分布函数可以互相确定。离散型随机变量的分布函数是阶梯状的。

6、服从两点分布(伯努利分布)的随机变量只能取2个值。0-1分布等价于两点分布。服从0-1分布的随机变量称为简单随机变量。

7、仅关注试验E的每一个结果是否发生的试验称为伯努利试验(Bernoulli experiment)。

8、将试验E在相同条件且每次试验的结果互不影响的前提下重复n次,称为n次重复独立试验。当E是伯努利试验时,称这n次独立试验为n重伯努利试验,对应的概率模型又称伯努利概型。

9、在n重伯努利试验中,设某事件A发生的概率为p,0 < p < 1,则事件A发生的总次数X的分布律为:

称随机变量X服从二项分布(binomial distribution),记为X ~ B(n, p)。
上式由组合数的意义、概率乘法公式和概率的可加性可直接证明,这里略去。
当(n + 1)p不为整数时,在

处取得的概率最大;否则,在
k = (n + 1)p与k = (n + 1)p – 1
处取得的概率最大。
证明:记

当分子 > 分母,即k < (n + 1)p时,总有P(X = k) > P(X = k – 1)。
如果(n + 1)p不是整数,那么在处取得的概率最大。
如果(n + 1)p是整数,可以直接验证P(X = (n + 1)p) = P(X = (n + 1)p – 1)。

10、对于二项分布(λ是常数),其分布律为

当n→+∞时,将上式展开,得:

对最右侧的第一项,可以将分母写成k个n相乘,第i个n对应上面分子的第i项,i = 1,2,……,k。
由极限的四则运算法则和常用极限

得第一项为1。第二项与n无关,直接保留。对第三项,由常用极限

得第三项为e-λ。因此

该分布称为:参数为λ的泊松分布(Poisson distribution),记为Xn ~ P(λ)。
泊松分布是二项分布的极限分布,二项分布是泊松分布在离散情形下的特殊情况。
对二项分布(λ是常数),因为其两个参数相乘为λ,所以也可以说成:
对二项分布

如果

那么

可以写成,即pn和是同阶无穷小。也可以说:当n很大、p很小时,

即此时二项分布近似于泊松分布,且参数λ = np。
大量(对应n很大)独立重复试验中的稀有事件(对应p很小)出现的次数,或者说单位时间内小概率的随机事件发生的次数,近似服从泊松分布。例如:某地区一年中大暴雨的次数、计算机反复执行一段算法的出错率、DNA序列的变异数等。

11、对于连续型随机变量,用分布函数和分布律来描述其取值的分布情况都不够直观。
设有频率分布直方图&

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值