数字图像处理(极简) 第一章 概述(docx)

建议先修课程:高等数学(微积分)、线性代数。
参考书目:
1、图像工程(上册)——图像处理(第4版) 章毓晋 清华大学出版社


链接:https://pan.baidu.com/s/1SPXl6QI-DEJC_Sub-Cv3yA
提取码:0000

一 概述

图像(image)是用各种观测系统以不同形式和手段观测客观世界而获得的,可以直接或间接作用于人眼并进而产生视知觉的实体。
客观世界中,以自然形式呈现出的图像通常称作物理图像(也叫做连续图像,图像信号值是连续变化的)。计算机并不能直接处理物理图像,因为计算机只认识离散数字(0和1),所以一幅图像在用计算机处理前必须转化为数字形式,即数字图像。
物理图像的连续信号值被离散化(采样(sample))后,得到一个被称作像素(pixel)的小块区域组成的二维矩阵,可以用来表示数字图像。每个像素包括两个属性:位置和色彩(或亮度)。有的设备可以采集3D图像,则其基本单元为体素(voxel)。
图像采集设备采集生成的二维矩阵的每一项都是具体的数值。而在有的时候,这个二维矩阵的每一项都可以是一个函数:
F=[■(f_1,1&f_1,2&⋯&f_(1,N)@f_2,1&f_2,2&⋯&f_(2,N)@⋮&⋮&⋱&⋮@f_(M,1)&f_(M,2)&⋯&f_(M,N) )]
上述矩阵也可以写成一组行向量或列向量,这里略去。
对于灰度图像(单色图像),每个像素的亮度用一个整数来表示,通常数值范围在0到255之间(8-bit的情况下)。而彩色图像可以用“红、绿、蓝”三元组(光的三基色)的二维矩阵来表示。通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该像素中没有,而255则代表相应的基色在该像素中取得最大值。
将物理图像采样并转化为数字图像的过程中,用分辨率(resolution)来表示采样的精确度。分辨率的一种单位是DPI(dot per inch),即单位长度(1英寸)上采样的像素个数。采样越密,分辨率越高,图像越清晰,但需要的存储空间也越大。
从所采集的图像来说,空间视场中的精度对应其空间分辨率,而幅度范围中的精度对应其幅度分辨率。前者对应数字化的空间采样点数(用不同维度的像素数量表示,比如1920×1080),而后者对应采样点值的量化级数(对灰度图像指灰度级数,对深度图像指深度级数)。它们都是重要的图像采集装置的性能指标。
量化(quantification)是图像在采样后,将图像色彩或亮度浓淡的连续变化值离散化为整数值的过程。量化级(quantitative level)用于刻画量化的精细程度。量化级越高,色彩越丰富,但占用空间也越大。

量化级数的选择主要基于两个因素:一是人类视觉系统的分辨率,即应该让人从图像中看得到连续的亮度变化而不要看出(间断的)量化级数;二满足具体应用所需要的分辨率。例如,有的应用只需要将目标与背景区别开(如许多文档),此时只用二值图像就可以了。如果将图像显示在屏幕上,人们能看出灰度(色彩)的跳跃,则还需要使用更多的量化级数。实际中许多图像被量化成256级,即每个像素用一个字节。一个原因源于计算机按字节读取,另一个原因是256级灰度一般就可给人以灰度连续的感觉。因为人类视觉系统对相对亮度差的分辨率还不到(总亮度范围的)2%(个别眼力极好的人除外),所以即使实际采集的图像的灰度范围并没有充分占满所有的量化级数(也包括有个别像素过暗或过亮的情况),也不易出现虚假轮廓。另外,在有些特殊应用(如医学图像)中,需要区分很微小的变化,此时常需要使用多于8比特的量化级数。
对一幅256级灰度的图像,如果保持空间分辨率仅将灰度级数减为128或64,一般并不能发现有什么明显的区别。如果将其灰度级数进一步减为32,则在原图的灰度缓慢变化的区域,常常会出现一些几乎看不出来的非常细的山脊状结构。这种效应称为虚假轮廓(原来连续变化的灰度看起来有了剧烈变化的灰度间断),它是由于在图像的灰度平滑区使用的灰度级数不够而造成的。它一般在用16级或不到16级均匀灰度级数的图中比较明显。

图像与图形(graphics)的区别(重点)

数字图像处理(Digital Image Processing,DIP)是指将一幅图像变成另一幅经过修改(改进)的图像,是一个由图像到图像的过程。其主要研究内容如下:
图像变换、图像增强、图像恢复、图像分割、数学形态学、图像编码与压缩。
·图像变换主要包括灰度变换、几何变换和正交变换。灰度变换目的在于:控制图像灰度直方图的分布,改善输出的图像。几何变换对于数字化标定、图像配准、校正、投影及特殊视觉特技效果的生成十分有用。
正交变换是将表示图像的二维矩阵看作特殊的二维信号并变换到频域,从而加强对图像信息的辨识与理解。广泛运用于图像特征提取、图像增强、图像压缩和图像识别领域。
·图像增强包括空域滤波增强和频域滤波增强,主要目的是根据任务目标突出图像中感兴趣的信息,消除干扰,改善图像的视觉效果或增强便于机器识别的信息。
·图像恢复,是指根据图像退化模型,消除或减轻在图像获取及传输过程中造成的图像品质下降(即退化)现象,恢复图像的本来面目。退化包括由成像系统光学特性造成的畸变

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值