深度学习作为机器学习的重要分支,在人工智能领域占据关键地位。本文将深入剖析深度学习的定义、需解决的问题及其发展历程,助力读者全面理解这一前沿技术。
一、深度学习的定义与起源
深度学习尚无统一标准定义,通常被视作机器学习中人工神经网络的高级模型,是实现人工智能的重要手段。其发展历程可追溯至 20 世纪 50 年代,当时出现的感知机堪称人工神经网络的雏形。此后,人工神经网络研究在 60 年代蓬勃发展,但 1969 年《感知器》一书揭示了感知机的致命缺陷,致使 70 年代该领域陷入低谷,被众多学者冷落。
到了 80 年代,随着误差反向传播算法的诞生,人工神经网络研究再度兴起。这一时期,深度神经网络(DNN)、循环神经网络(RNN)和卷积神经网络(CNN)等相继问世。90 年代,高级形式的人工神经网络不断涌现,如 1997 年的 LSTM 和 1998 年的 LeNet-5。进入 21 世纪,深度学习逐渐崭露头角,被知名机构列为战略技术。2010 年代,谷歌 DeepMind 推出 AlphaGo,使得深度学习在全球范围内引发热潮。
二、深度学习需解决的问题
深度学习主要致力于解决分类、聚类和回归这三大问题,这些问题可借助机器学习的监督学习、无监督学习等方法来处理。
- 分类问题:旨在依据数据的特征将其划分到不同类别。以汽车分类为例,通过汽车的长度、宽度、高度、车轮尺寸和发动机马力等特征,可将汽车分为轻型、半中型、中型和大型等类别。在实际应用中,图像识别、语音识别等领域都涉及大量分类任务,深度学习模型可通过学习大量标记数据,准确判断数据所属类别。
- 聚类问题:是对数据实例进行分组,将具有相似特征的数据归为一组。例如,依据汽车的各项特征进行聚类,不过聚类后的数据分组含义通常需人工确定,如将某一组定义为紧凑型汽车。聚类在市场细分、客户群体分类等场景应用广泛,有助于发现数据中的潜在规律和结构。
- 回归问题:主要用于预测不完整数据的值。比如,已知汽车的部分特征,如宽度、高度、车轮尺寸和发动机马力,利用深度学习模型预测其长度。在实际应用中,回归问题常见于房价预测、股票价格预测等领域,为决策提供重要参考依据。
- 监督学习与无监督学习:监督学习通过训练标记数据来解决分类和回归问题,因有明确的正确答案,学习相对容易且效果显著,但数据标记成本高昂,面对海量数据时,人工标记往往难以实现。无监督学习则针对未标记数据进行训练,主要用于数据分组和特征分析,虽无需标记数据,成本较低,但通常需要人工干预来解读分析结果。
三、深度学习的发展关键 —— 激活函数
深度学习的核心组件之一是激活函数,它在人工神经网络的隐藏层中发挥着至关重要的作用。激活函数模拟生物神经元的工作机制,当输入信号的电位超过一定阈值时,神经元被激活并传递信号。在神经网络中,激活函数决定了传递给下一层感知机的值,其类型直接影响神经网络的效率,这与误差反向传播过程中的梯度损失密切相关。
- 阶跃函数:作为感知机中最早应用的激活函数,当权重乘积之和小于 0 时,输出 0;大于 0 时,输出 1。其输出结果为离散值,具有简单直观的特点,但存在梯度消失问题,不利于模型的训练优化。
- ReLU 函数:当权重乘积之和大于 0 时,直接返回输入值;小于 0 时,返回 0。该函数有效解决了梯度消失问题,能加快模型的收敛速度,在深度学习模型中应用广泛。
- 线性函数:输入和输出相同,函数图像为一条直线。虽然形式简单,但在某些特定场景下,如线性回归模型中,仍具有重要应用价值。
- Sigmoid 函数:将权重乘积之和的值映射到 0 和 1 之间,也被称为逻辑函数。其在输入值绝对值较大时,变化缓慢,可能导致梯度消失,但在处理概率输出等问题时表现出色。
- 双曲正切函数:输出值范围在 -1 到 1 之间,形状与 Sigmoid 函数相似,但变化速度更快。相比 Sigmoid 函数,它能更好地处理梯度消失问题,在一些深度学习模型中也得到广泛应用。