对抗型数据包络分析(DEA)交叉效率评价模型及MATLAB应用

149 篇文章 ¥59.90 ¥99.00
本文介绍了对抗型DEA交叉效率评价模型,该模型考虑了决策单元间的相互作用和竞争,比传统DEA更准确评估效率。通过MATLAB示例代码展示了如何实施该模型,适用于各种决策问题,有助于做出更精确的决策。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据包络分析(DEA)是一种常用的评价方法,用于衡量决策单元的相对效率。然而,传统的DEA方法没有考虑到决策单元之间的相互作用和竞争,因此无法准确评估决策单元的效率。为了解决这个问题,研究者们提出了对抗型DEA交叉效率评价模型。

对抗型DEA交叉效率评价模型引入了竞争的概念,将决策单元划分为两个组别:投入组和产出组。投入组的目标是最大化其效率,而产出组的目标是最小化投入组的效率。这种竞争机制能够更准确地评估决策单元的效率水平。

下面是一个基于MATLAB的对抗型DEA交叉效率评价模型的示例代码:

% 数据准备
X = [1 2 3; 4 5 6; 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值