- 博客(25)
- 收藏
- 关注
原创 SSD出现Caffe: Data layer prefetch queue empty的问题?
参考:https://www.zhihu.com/question/263929129已解决.20200808
2020-08-08 10:49:58 322
转载 SSD系列目标检测算法
1.原版SSD2.tinyDSOD3.RefineDetTwo Stage 的精度优势二阶段的分类:二步法的第一步在分类时,正负样本是极不平衡的,导致分类器训练比较困难,这也是一步法效果不如二步法的原因之一,也是focal loss的motivation。而第二步在分类时,由于第一步滤掉了绝大部分的负样本,送给第二步分类的proposal中,正负样本比例已经比较平衡了,...
2020-03-29 22:24:36 603
转载 权重衰减(weight decay)与L2正则化
1. 权重衰减(weight decay)L2正则化的目的就是为了让权重衰减到更小的值,在一定程度上减少模型过拟合的问题,所以权重衰减也叫L2正则化。1.1 L2正则化与权重衰减系数L2正则化就是在代价函数后面再加上一个正则化项:其中C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与C0...
2020-03-29 17:07:47 2263
转载 caffe不同lr_policy参数设置方法
在caffe源码的caffe-master/sec/caffe/proto/caffe.proto下记录了不同的学习策略的计算方法:// The learning rate decay policy. The currently implemented learning rate // policies are as follows: // - fixed: always re...
2020-03-29 16:22:59 246
原创 车牌字符分类任务训练技巧
1、CenterLossTODO2、ResNet-D结构根据大佬的实验结果我直接选用了提升效果最好的ResNet-D结构,在车牌字符分类任务中发现确实有提升。参考文献:https://mp.weixin.qq.com/s?__biz=MzUxNjcxMjQxNg==&mid=2247497570&idx=4&sn=ad26f02e584d...
2020-03-26 09:19:50 400
原创 进程与线程(代码对比)
下面是抽象类比:单CPU:一台单核处理器计算机 = 一个车间;多CPU:一台多核处理器计算机 = 一座工厂;进程:一个车间 = 一个进程; (即一个运行的程序)多进程:一座工厂可以同时运行多个车间;CPU和进程:单CPU只能同时运行单个进程,多CPU可以同时运行多个进程。线程:车间内一个工人 = 一个线程;进程与线程:一个进程可以包括多个线程。线程间内存共享:车间的空间是工人们共享...
2020-03-18 09:31:09 643 1
原创 图像去雾
参考文献:https://blog.csdn.net/kuweicai/article/details/78608468?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
2020-03-11 17:19:34 324
原创 不同车牌类型尺寸
1.车牌类型单层蓝牌:牌照由前后由两块一样尺寸的牌照组成,牌照尺寸为440mmx140mm。这样的牌照组合一般用于小型汽车、轻客M1类车型、载重小于1.0吨轻型载货车。前单黄后双黄:牌照由前后两块不同尺寸在牌照组成,车前牌照尺寸为440mmx140mm;车尾牌照尺寸为440mmx220mm。这样的牌照组合一般用在普通M2类车型、9座以上大中型客车、载重1.0吨以上的载货汽车。挂车牌...
2020-03-05 14:49:59 13632
原创 Ubuntu系统主机突然断电或其他原因导致磁盘损坏
一、出错原因磁盘检测不能通过,可能是因为系统突然断电或其它未正常关闭系统导致。二、解决方式(initramfs) fsck /dev/sda1 // 提示那块有问题就是sda几然后一路y最后切记exit系统会恢复重启参考文献:https://blog.csdn.net/huoxingrenhdh/article/details/87888554...
2020-03-04 14:51:11 2169 1
原创 图像处理技术及相应C++代码
1、直方图均衡化 //直方图均衡化Mat equalizeHist_src;Mat imageRGB[3];split(src, imageRGB);for (int i = 0; i < 3; i++){ equalizeHist(imageRGB[i], imageRGB[i]);}merge(imageRGB, 3, equalizeHist_src);//im...
2020-03-03 19:44:44 1007
转载 caffe常用网络层及参数说明
1.Normalize层layer { name: "conv4_3_norm" type: "Normalize" bottom: "conv4_3" top: "conv4_3_norm" norm_param { across_spatial: false scale_filler { type: "constant" val...
2020-03-03 19:13:54 900
原创 CMakeLists和makefile文件编写
1、CMakeLists和makefile区别:CMake是一个跨平台的软件,在很多平台可以使用。一般在windows下,我们会直接使用VS生成项目,在Linux下面,我们也可以使用QT Creater生成项目,但是两个不同平台上面的项目不能相互移植。这就有了CMake的用武之地,我们可以先编写一个CMakeLists.txt文件,将需要的.h和.cpp文件包含进来,然后在不同的平台使用CMa...
2020-03-03 19:13:07 869
转载 在c++程序中调用caffe训练完毕的模型进行分类
在各位朋友从github下载caffe源码时,在源码中有一个example文件夹,在example文件夹中有一个cpp_classification的文件夹,打开它,有一个名为classification的cpp文件,这就是caffe提供给我们的调用分类网络进行前向计算,得到分类结果的接口,那么,让我们先来解析一下这个classification.cpp文件,按照惯例,先将源码及注释放出:#...
2020-03-03 19:11:00 437
原创 shared_ptr(智能指针)
只要将 new 运算符返回的指针 p 交给一个 shared_ptr 对象“托管”,就不必担心在哪里写delete p语句——实际上根本不需要编写这条语句,托管 p 的 shared_ptr 对象在消亡时会自动执行delete p。而且,该 shared_ptr 对象能像指针 p —样使用,即假设托管 p 的 shared_ptr 对象叫作 ptr,那么 *ptr 就是 p 指向的对象。sh...
2020-03-02 16:16:11 197
原创 空指针和未初始化的指针的区别
1.为什么指针变量定义时一定要初始化?因为你首先要理解一点:内存空间不是你分配了才可以使用只是你分配了之后使用才安全。为什么要进行对指针初始化呢?因为指针未被初始化,所以指针所指向的也是随机的,他是个野指针,如果你引用指针,并修改这个指针所指向的内容,而如果这个指针所指向的内容恰好是另外一个程序的数据的话,你将其进行修改了,就会导致另外一个程序可能不能正常运行了。2.指针变量初始化为N...
2020-02-23 13:47:28 1011
原创 LNK2001:无法解析的外部符号
编译C++时候报“无法解析的外部符号”,一般就是你引用的第三方库时候未设置其对应静态库的路径。我们引用第三方库时,需要进行指定依赖项配置,若没有进行相关配置,则编译器会出现“LNK2001: 无法解析的外部符号”错误。这个是最常见的问题,具体步骤:项目、属性、链接器、常规、附加库目录:填写附加依赖库所在目录 分号间隔多项项目、属性、链接器、输入、附加依赖项:填写附加依赖库的名字.lib...
2020-02-23 09:25:40 2090
原创 图片作图代码(C++)
1.矩形框1.1使用对角线的两点pt1,pt2画一个矩形轮廓或者填充矩形void rectangle(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, int thickness = 1, int ...
2020-02-20 15:52:10 2191
原创 caffe网络中use_global_stats在训练和推断阶段参数设置
Batch Normalization层中有个参数use_global_stats,它表示是否使用caffe内部的均值和方差。训练的时候,要将use_global_stats设置为false,也可以不写,caffe默认是false。测试的时候将use_global_stats设置为true。影响:1.训练如果不设为false,会导致模型不收敛2.测试如果不设置为true,会导致准确...
2020-02-19 17:17:41 777
原创 caffe迁移训练
1.断点续训#!/usr/bin/env shROOT=/home/felix/Felix/caffe-augmentation-master/data/GeneralLOG=$ROOT/models/densenet/train-'data +%Y-%m-%d-%H-%M-%S'.logCAFFE=./build/tools/caffe.bin $CAFFE train...
2020-02-19 14:36:19 255
转载 C++ this指针(直戳本质)
为了能让大家看清 this指针的本质,我们会先讲一点C++的历史——C++ 程序到C程序的翻译过程。C++ 程序到C程序的翻译C++ 是在C语言的基础上发展而来的,第一个 C++ 的编译器实际上是将 C++ 程序翻译成C语言程序,然后再用C语言编译器进行编译。C语言没有类的概念,只有结构,函数都是全局函数,没有成员函数。翻译时,将 class 翻译成 struct、对象翻译成结构变...
2020-02-17 11:43:26 227
原创 深度学习之解决问题2018.5.3
各种深度学习过程中遇到的问题:Netscope:支持Caffe的神经网络结构在线可视化工具https://ethereon.github.io/netscope/#/editor https://playground.tensorflow.org 从零开始~Ubuntu16.04安装caffe+cuda9.1+cndnn9.1+OpenCV2.4.9http://blog...
2018-04-10 09:35:47 918
原创 从零开始~Ubuntu16.04安装caffe+cuda9.1+cndnn9.1+OpenCV2.4.9
1.Ubuntu16.04安装Ubuntu系统及U盘启动工具下载:链接:http://pan.baidu.com/s/1c74mXg密码:fii4 制作U盘启动工具及安装系统参考:http://jingyan.baidu.com/article/eb9f7b6d8536a8869364e813.html Att:1.制作U盘启动工具时注意备份U盘数据,制作过程会格...
2018-01-17 16:25:29 1491
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人