有向图的强连通分量与无向图的双连通分量总结

首先我们需要搞懂图论中的一些基础概念

完全图: 假设一个图有 n n n 个顶点, 并且每两个点之间都有边就叫完全图
连通图(多指无向图): 对于两个点, u , v , u,v, u,v, 如果 u , v u,v u,v 之间有通路,则称 u , v u,v u,v 两点连通, 如果图中任意两个点都连通, 则称这个图为连通图
连通分量: 连通分量中任意两点 u , v , u,v, u,v, 两两之间必定能互相到达, u − > v , v − > u . u->v, v->u. u>v,v>u. (当然一个点也是连通分量)
强连通分量: 极大的连通分量,对于连通分量内部的任意两个点 u , v , u, v, u,v,, 既存在 u u u v v v 的路径, 又存在 v v v u u u的路径,并且如果再加入其它点和边就不再连通的,

在这里插入图片描述
在这里插入图片描述

tarjan算法求强连通分量

了解 t a r j a n tarjan tarjan 算法之前你必须了解一个概念, 时间戳

时间戳: 根据深度优先搜索的顺序给节点标号
有了时间戳后我们就可以引入两个概念:
d f n [ u ] dfn[u] dfn[u]: 节点 u u u 所对应的时间戳
l o w [ u ] low[u] low[u]: 节点 u u u 所能够到达的时间戳的最小值

如果 d f n [ u ] = = l o w [ u ] dfn[u] == low[u] dfn[u]==low[u]    ⟺    \iff u u u 节点是所在强连通分量的最高点

判断一个点是否在某个强连通分量中   

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

广西小蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值