题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3572
题意:给你m个机器和n个任务,每个任务有处理该任务需要的时间,最早的开始时间和最迟的结束时间。我觉得这个题目还是值得思考的,首先,有一个关系,就是每个机器在每一天只能处理一个任务,这个条件其实很关键,这样就可以把机器和天数建立边,容量为1来限制,这样是不是瞬间就眼熟了?(其实我也是参考的别人的思路)
设源点s,每一个任务和源点相连,容量为处理时间p,然后把任务和该任务可以存在的天数相连,容量为1,再讲每一天和汇点t相连,容量为m,表示每一天都可以有m个机器工作,最后求最大流。设一个总处理量sum,sum=sigma(pi),及所有任务的处理次数(按一天一次算),当最后的最大流等于总处理量是,就是yes,否则就是no。
AC代码:
//
// Created by CQU_CST_WuErli
// Copyright (c) 2015 CQU_CST_WuErli. All rights reserved.
//
// #include<bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define ALL(x) x.begin(),x.end()
#define AT(i,v) for (auto &i:v)
#define For_UVa if (kase!=1) cout << endl
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define look(x) cout << #x << "=" << x
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define root 1,n,1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define BigInteger bign
const int MAX_L=2005;// For BigInteger
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
const double eps=1e-9;
const double pi=acos(-1);
typedef long long ll;
using namespace std;
const int N=3e5;
const int M=1010;
int pnt[N],head[M],nxt[N],cap[N];
int cnt;
int iter[M],level[M];
int n,m;
void add_edge(int u,int v,int w){
pnt[cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
cap[cnt++]=w;
}
bool bfs(int s,int t){
OFF(level);
queue<int> q;
q.push(s);
level[s]=0;
while (!q.empty()){
int x=q.front();q.pop();
for (int i=head[x];~i;i=nxt[i]){
int v=pnt[i];
if (level[v]==-1 && cap[i]){
level[v]=level[x]+1;
q.push(v);
}
}
}
return level[t]!=-1;
}
int dfs(int u,int t,int Flow){
if (u==t) return Flow;
int left=Flow;
for (int i=iter[u];~i;i=nxt[i]){
int v=pnt[i];
if (level[v]==level[u]+1 && cap[i]){
int d=dfs(v,t,min(left,cap[i]));
left-=d;
cap[i]-=d;
cap[i^1]+=d;
if (!left) return Flow;
}
}
level[u]=-1;
return Flow-left;
}
int Dinic(int s,int t){
int Max_flow=0;
while (bfs(s,t)){
for (int i=s;i<=t;i++) iter[i]=head[i];
Max_flow+=dfs(s,t,INF_INT);
}
return Max_flow;
}
int main(){
#ifdef LOCAL
freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
// freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
int _;
for (int kase=scanf("%d",&_);kase<=_;kase++){
OFF(head);cnt=0;
SII(n,m);
int source=0,sink=0,maxd=0;
int sum=0;
for (int i=1;i<=n;i++){
int p,st,ed;
SIII(p,st,ed);
sum+=p;
add_edge(source,i,p);
add_edge(i,source,0);
maxd=max(maxd,ed);
for (int j=st;j<=ed;j++){
add_edge(i,j+n,1);
add_edge(j+n,i,0);
}
}
sink=maxd+n+1;
for (int i=1;i<=maxd;i++){
add_edge(i+n,sink,m);
add_edge(sink,i+n,0);
}
int ans=Dinic(source,sink);
// lookln(ans);
cout << "Case " << kase << ": ";
if (ans==sum) cout << "Yes\n";
else cout << "No\n";
puts("");
}
return 0;
}