HDU 3572 Task Schedule

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3572

题意:给你m个机器和n个任务,每个任务有处理该任务需要的时间,最早的开始时间和最迟的结束时间。我觉得这个题目还是值得思考的,首先,有一个关系,就是每个机器在每一天只能处理一个任务,这个条件其实很关键,这样就可以把机器和天数建立边,容量为1来限制,这样是不是瞬间就眼熟了?(其实我也是参考的别人的思路)
设源点s,每一个任务和源点相连,容量为处理时间p,然后把任务和该任务可以存在的天数相连,容量为1,再讲每一天和汇点t相连,容量为m,表示每一天都可以有m个机器工作,最后求最大流。设一个总处理量sum,sum=sigma(pi),及所有任务的处理次数(按一天一次算),当最后的最大流等于总处理量是,就是yes,否则就是no。

AC代码:

//
//  Created by  CQU_CST_WuErli
//  Copyright (c) 2015 CQU_CST_WuErli. All rights reserved.
//
// #include<bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define ALL(x) x.begin(),x.end()
#define AT(i,v) for (auto &i:v)
#define For_UVa if (kase!=1) cout << endl
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define look(x) cout << #x << "=" << x
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define root 1,n,1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define BigInteger bign
const int MAX_L=2005;// For BigInteger
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
const double eps=1e-9;
const double pi=acos(-1);
typedef long long  ll;
using namespace std;

const int N=3e5;
const int M=1010;
int pnt[N],head[M],nxt[N],cap[N];
int cnt;
int iter[M],level[M];
int n,m;

void add_edge(int u,int v,int w){
    pnt[cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
    cap[cnt++]=w;
} 

bool bfs(int s,int t){
    OFF(level);
    queue<int> q;
    q.push(s);
    level[s]=0;
    while (!q.empty()){
        int x=q.front();q.pop();
        for (int i=head[x];~i;i=nxt[i]){
            int v=pnt[i];
            if (level[v]==-1 && cap[i]){
                level[v]=level[x]+1;
                q.push(v);
            }
        }
    }
    return level[t]!=-1;
}

int dfs(int u,int t,int Flow){
    if (u==t) return Flow;
    int left=Flow;
    for (int i=iter[u];~i;i=nxt[i]){
        int v=pnt[i];
        if (level[v]==level[u]+1 && cap[i]){
            int d=dfs(v,t,min(left,cap[i]));
            left-=d;
            cap[i]-=d;
            cap[i^1]+=d;
            if (!left) return Flow;
        }
    }
    level[u]=-1;
    return Flow-left;
}

int Dinic(int s,int t){
    int Max_flow=0;
    while (bfs(s,t)){
        for (int i=s;i<=t;i++) iter[i]=head[i];
        Max_flow+=dfs(s,t,INF_INT);
    }
    return Max_flow;
}

int main(){
#ifdef LOCAL
    freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
//  freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
    int _;
    for (int kase=scanf("%d",&_);kase<=_;kase++){
        OFF(head);cnt=0;
        SII(n,m);
        int source=0,sink=0,maxd=0;
        int sum=0;
        for (int i=1;i<=n;i++){
            int p,st,ed;
            SIII(p,st,ed);
            sum+=p;
            add_edge(source,i,p);
            add_edge(i,source,0);
            maxd=max(maxd,ed);
            for (int j=st;j<=ed;j++){
                add_edge(i,j+n,1);
                add_edge(j+n,i,0);
            }
        }
        sink=maxd+n+1;
        for (int i=1;i<=maxd;i++){
            add_edge(i+n,sink,m);
            add_edge(sink,i+n,0);
        }
        int ans=Dinic(source,sink);
//      lookln(ans);
        cout << "Case " << kase << ": ";
        if (ans==sum) cout << "Yes\n";
        else cout << "No\n";
        puts("");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值