题意:
重复覆盖经典题目,然而要浮点数二分答案,精度是个坑- -
浮点数二分和整数二分还是有点不同的。
我的代码跑的可能有点慢,应该是模板的关系。
代码:
//
// Created by CQU_CST_WuErli
// Copyright (c) 2016 CQU_CST_WuErli. All rights reserved.
//
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#include <ctime>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define rep(flag,start,end) for(int flag=start;flag<=end;flag++)
#define Rep(flag,start,end) for(int flag=start;flag>=end;flag--)
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
#define Root 1,n,1
#define BigInteger bign
const int MAX_L=2005;// For BigInteger
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
const double eps=1e-8;
const double pi=acos(-1);
typedef long long ll;
using namespace std;
double mid;
int n,m,k;
struct P
{
double x,y;
P(){}
P(double x,double y):x(x),y(y){}
bool operator < (const P& rhs) const {
return x==rhs.x?y<rhs.y:x<rhs.x;
}
}city[60],radar[60];
double dis(P& a,P& b){
double dx=a.x-b.x;
double dy=a.y-b.y;
return sqrt(dx*dx+dy*dy);
}
struct DLX {
const static int maxn=1000010;
int L[maxn],R[maxn],U[maxn],D[maxn];
int Row[maxn],Col[maxn];
int H[maxn],S[maxn];
int vis[100];
int ans;
int size;
stack<int> Ans;
void init(int m) {
for (int i=0;i<=m;i++) {
U[i]=D[i]=i;
L[i]=i-1;R[i]=i+1;
S[i]=0;
}
L[0]=m;R[m]=0;
for (int i=0;i<maxn;i++) H[i]=-1;
size=m;
ans=-1;
while (Ans.size()) Ans.pop();
}
void link(int row,int col) {
size++;
Col[size]=col;Row[size]=row;
S[col]++;
U[size]=U[col];D[size]=col;
D[U[col]]=size;
U[col]=size;
if (H[row]!=-1) {
R[size]=H[row];
L[size]=L[H[row]];
R[L[size]]=size;
L[R[size]]=size;
}
else
H[row]=L[size]=R[size]=size;
}
// exact cover
void remove(int c) {
L[R[c]]=L[c];
R[L[c]]=R[c];
for (int i=D[c];i!=c;i=D[i]) {
for (int j=R[i];j!=i;j=R[j]) {
U[D[j]]=U[j];
D[U[j]]=D[j];
S[Col[j]]--;
}
}
}
void resume(int c) {
for (int i=U[c];i!=c;i=U[i]) {
for (int j=L[i];j!=i;j=L[j]) {
U[D[j]]=j;
D[U[j]]=j;
S[Col[j]]++;
}
}
R[L[c]]=c;
L[R[c]]=c;
}
bool dfs(int cnt) {
if (ans!=-1) return true;
if (R[0]==0) {
ans=cnt;
return true;
}
int c=0;
int Min=INF_INT;
for (int i=R[0];i!=0;i=R[i]){
if (Min>S[i]) Min=S[i],c=i;
// lookln(i);
}
remove(c);
for (int i=D[c];i!=c;i=D[i]) {
Ans.push(Row[i]);
for (int j=R[i];j!=i;j=R[j]) {
remove(Col[j]);
}
if (dfs(cnt+1)) return true;
for (int j=L[i];j!=i;j=L[j]) {
resume(Col[j]);
}
Ans.pop();
}
resume(c);
return false;
}
// exact cover ends;
// multiple cover
void del(int c) {
for (int i=D[c];i!=c;i=D[i]) {
L[R[i]]=L[i];
R[L[i]]=R[i];
}
}
void rec(int c) {
for (int i=U[c];i!=c;i=U[i]) {
L[R[i]]=R[L[i]]=i;
}
}
int h() {
int ret=0;
CLR(vis);
for (int i=R[0];i!=0;i=R[i]) if (!vis[i]) {
ret++;
vis[i]=1;
for (int j=D[i];j!=i;j=D[j])
for (int k=R[j];k!=j;k=R[k])
vis[Col[k]]=1;
}
return ret;
}
bool DFS(int cnt) {
if (cnt>k) return false;
if (cnt+h()>k) return false;
if (R[0]==0) {
// lookln(mid);
return true;
}
int c=0;
int Min=INF_INT;
for (int i=R[0];i!=0;i=R[i])
if (Min>S[i]) Min=S[i],c=i;
// lookln(c);
for (int i=D[c];i!=c;i=D[i]) {
del(i);
for (int j=R[i];j!=i;j=R[j]) del(j);
if (DFS(cnt+1)) return true;
for (int j=L[i];j!=i;j=L[j]) rec(j);
rec(i);
}
return false;
}
// multiple cover ends;
}dlx;
int main(int argc, char const *argv[]) {
#ifdef LOCAL
freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
// freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
int T;SI(T);
while(T--) {
SIII(n,m,k);
rep(i,1,n) scanf("%lf%lf",&city[i].x,&city[i].y);
rep(i,1,m) scanf("%lf%lf",&radar[i].x,&radar[i].y);
double L=0.00,R=0.00;
rep(i,1,m) rep(j,1,n) R=max(R,dis(city[j],radar[i]));
// lookln(R);
while (R-L>eps) {
mid=(L+R)/2;
// lookln(mid);
dlx.init(n);
rep(i,1,m) rep(j,1,n) {
if (dis(radar[i],city[j])<=mid) dlx.link(i,j);
}
if (dlx.DFS(0)) R=mid;
else L=mid;
// if (mid==2.5) break;
}
printf("%.6lf\n",(L+R)/2);
// lookln(dlx.size);
}
return 0;
}