机器学习资料记录整理

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

机器学习资料记录整理。


新手类资料

其实我会觉得直接盲目点开一个课程从头到尾看一遍,会非常的浪费时间,而且缺乏重点。所以我的学习方法是先搭建自己的基本知识库,找到一些资源,能帮自己最快的熟悉对应领域的关键词,并且知道这些关键词之间的联系。然后再进阶到深入探索,效率最高。以下是我自己使用的一些入门内容。

  1. 产品经理的人工智能学习库

对应链接:https://easyai.tech/ 公众号同名
介绍:包含大多数人工智能的相关专有名词,使用的语言通俗易懂,并且有对应的示意图帮助理解。适合新手入门AI领域。但是目前更新的内容不是很多,从AI发展趋势对应的文章来看,似乎只更新到了2020年的部分。目前包含的内容有:AI算法(常见的CNN, Encoder-Decoder, Random forest, RNN, decision tree, GAN, RL, LSTM),基础科普(不同的学习都是什么,训练过程发生了什么,算法和算力等等),数学基础(关于线性代数,概率论这两门课程的基本内容),然后关于深度学习,语音自然语言处理,计算机视觉等内容。适合在前期快速入门。

  1. Google 机器学习教育

对应链接:https://developers.google.com/machine

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值