题2 灭蚊行动
【问题描述】
自从在物理课上学习了有关传感器的知识以后,聪聪一直幻想着能自己制造出一个带有传感器的机器人。在经过无数次的计算、实验之后,聪聪终于成功地做出了一个灭蚊机器人。它能够依靠声传感器捕捉蚊子飞行时发出的微笑声音,然后迅速向蚊子所在的地方喷射一种特殊的药水,从而使得会咬人的雌性蚊子瞬间转变为不咬人的雄性蚊子。
为了测试灭蚊机器人是否能够正常工作,聪聪设置了一个模拟环境。这个环境由许多交叉路口和街道构成,而且任意两个交叉路口都是直接或间接相连的。每条街道上都有一只雌蚊子,且蚊子是不会移动的。为了简化问题,任意两个路口之间只有一条路径,也就是说,整个图是一棵树。灭蚊机器人会从一个指定的交叉路口出发,顺着街道行走,并且会将街道上的雌蚊子转变为雄蚊子。当所有街道都被遍历过至少一次之后,机器人就可以在任意一个交叉路口停下。为了节省时间,也为了节省能源,聪聪希望找到一个总长度最短的路线。
子问题1:聪聪先用一个机器人做实验。请求出最短路线长度。
子问题2:后来聪聪觉得只有一个机器人的话工作效率不够高,于是就又做出了一个完全相同的机器人。两个机器人会从同一点出发,可以顺着不同的路线走,最后它们可以分别停在不同的位置。需要注意的是,可以有一个机器人一直呆在起点,这时就相当于只有一个机器人。请求出用两个机器人灭蚊的最短路线长度。
【输入格式】
输入文件mosquito.in包含N行。
第1行包含两个正整数N、S,分别表示交叉路口的总数和机器人出发的路口序号。路口的序号为1..N。
第2到N行,每行包含三个用空格隔开的整数A、B、C,表示一条从交叉路口A到交叉路口B的街道(街道是双向的),且该街道的长度为C(1≤C≤1000)。
【输出格式】
输出文件mosquito.out包含2行,分别输出两个子问题的解。
【输入输出样例】mosquito.in
51
12 8
13 10
34 10
45 7
【输出样例】mosquito.out
43
35
【输入输出样例解释】
只有一个机器人,最短的路线为:1-2-1-3-4-5,总长度为43。
有两个机器人,最短路线为:
1号机器人:1-2,长度为8。
2号机器人:1-3-4-5,长度为27。
总的长度为35。
【数据规模和约定】
对于20%的数据,n≤15。 对于全部的数据,n≤10 0000。
保证输出不超过32位有符号整型的范围。
学长说这分明是到水题呀。。。(苟蒻无限自卑ing)
其实看到一个机器人的时候是会的
但是另一个子问题有俩(呵呵)。。。。
对于第一问,答案是所有边权*2-从s出发最长路
其实第二问无非是所有边权*2-全图最长路。。。
何为全图最长路?就是以任意点为根,他的最长路+次长路
可以假设一开始一个robot一直搞啊搞,最后他们一起走到某点,其中一个先搞完其他,
然后两个robot个一路
(果然苟蒻智商不够想不到呀)
#include<iostream>
#include<vector>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn = 1e5 + 10;
struct E{
int to,w;
};
int f[maxn],m1[maxn],m2[maxn],n,s,m;
long long tot = 0;
bool vis[maxn];
vector <E> v[maxn];
void dfs (int k)
{
vis[k] = true;
for (int l = 0; l < v[k].size(); l++)
if (!vis[v[k][l].to])
{
int to = v[k][l].to;
dfs(to);
int w = v[k][l].w;
if (w + m1[to] > m2[k])
{
if (w + m1[to] > m1[k])
{
m2[k] = m1[k];
m1[k] = w + m1[to];
}
else
{
m2[k] = w + m1[to];
}
}
}
m = max(m,m1[k] + m2[k]);
}
int main()
{
#ifndef YZY
freopen("mosquito.in","r",stdin);
freopen("mosquito.out","w",stdout);
#else
freopen("yzy.txt","r",stdin);
#endif
cin >> n >> s;
for (int i = 1; i < n; i++)
{
int l,r,w;
scanf("%d%d%d",&l,&r,&w);
v[l].push_back((E){r,w});
v[r].push_back((E){l,w});
tot += 2*1LL*w;
}
dfs(s);
printf("%lld\n%lld",tot-1LL*m1[s],tot-1LL*m);
return 0;
}