2440: [中山市选2011]完全平方数
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2650 Solved: 1284
[ Submit][ Status][ Discuss]
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。
Sample Input
4
1
13
100
1234567
1
13
100
1234567
Sample Output
1
19
163
2030745
19
163
2030745
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9
, T ≤ 50
Source
询问第k个无平方因子数
算是莫比乌斯函数的一个应用吧(但还谈不上莫比乌斯反演)
首先二分x,询问[1,x]中无平方因子数的个数
利用容斥原理
ans = 总数 - 含一个质因数的平方的因子的数+含两个质因数的平方的因子的数...
每一项的前缀恰好是莫比乌斯函数
ans = ∑u(i)*[x/(i*i)]
∑只需执行到根号x即可
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<bitset>
using namespace std;
const int maxn = 1E9;
const int maxm = 1E6 + 10;
typedef long long LL;
int goal,mu[maxm];
bool bo[maxm];
bool Judge(LL now)
{
LL x = sqrt(now);
LL tot = 0;
for (LL i = 1; i <= x; i++) {
LL X = i*i;
tot += 1LL*mu[i]*now/X;
}
return tot >= goal;
}
int main()
{
#ifdef DMC
freopen("DMC.txt","r",stdin);
#endif
for (int i = 1; i < maxm; i++) mu[i] = 1;
for (int i = 2; i < maxm; i++)
if (!bo[i]) {
mu[i] = -1;
for (int j = 2; i*j < maxm; j++) {
bo[j*i] = 1;
mu[j*i] *= mu[i];
if (j % i == 0) mu[j*i] = 0;
}
}
int T; scanf("%d",&T);
while (T--) {
scanf("%d",&goal);
LL L = 1,R = 2E9;
while (R - L > 1) {
LL mid = (L + R) >> 1LL;
if (Judge(mid)) R = mid;
else L = mid;
}
if (Judge(L)) printf("%d\n",L);
else printf("%d\n",R);
}
return 0;
}