2440: [中山市选2011]完全平方数

2440: [中山市选2011]完全平方数

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 2650   Solved: 1284
[ Submit][ Status][ Discuss]

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。 

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50

Source

[ Submit][ Status][ Discuss]




询问第k个无平方因子数

算是莫比乌斯函数的一个应用吧(但还谈不上莫比乌斯反演)

首先二分x,询问[1,x]中无平方因子数的个数

利用容斥原理

ans = 总数 - 含一个质因数的平方的因子的数+含两个质因数的平方的因子的数...

每一项的前缀恰好是莫比乌斯函数

ans = ∑u(i)*[x/(i*i)]

∑只需执行到根号x即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<stack>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<bitset>
using namespace std;

const int maxn = 1E9;
const int maxm = 1E6 + 10;
typedef long long LL;

int goal,mu[maxm]; 
bool bo[maxm];

bool Judge(LL now)
{
	LL x = sqrt(now);
	LL tot = 0;
	for (LL i = 1; i <= x; i++) {
		LL X = i*i;
		tot += 1LL*mu[i]*now/X;
	}
		
	return tot >= goal;
}

int main()
{
	#ifdef DMC
		freopen("DMC.txt","r",stdin);
	#endif
	
	for (int i = 1; i < maxm; i++) mu[i] = 1;
	for (int i = 2; i < maxm; i++)
		if (!bo[i]) {
			mu[i] = -1;
			for (int j = 2; i*j < maxm; j++) {
				bo[j*i] = 1;
				mu[j*i] *= mu[i];
				if (j % i == 0) mu[j*i] = 0;
			}
		}
	
	int T; scanf("%d",&T);
	while (T--) {
		scanf("%d",&goal);
		LL L = 1,R = 2E9;
		while (R - L > 1) {
			LL mid = (L + R) >> 1LL;
			if (Judge(mid)) R = mid;
			else L = mid;
		}
		if (Judge(L)) printf("%d\n",L);
		else printf("%d\n",R);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值