3343: 教主的魔法
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1038 Solved: 454
[ Submit][ Status][ Discuss]
Description
教主最近学会了一种神奇的魔法,能够使人长高。于是他准备演示给XMYZ信息组每个英雄看。于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1、2、……、N。
每个人的身高一开始都是不超过1000的正整数。教主的魔法每次可以把闭区间[L, R](1≤L≤R≤N)内的英雄的身高全部加上一个整数W。(虽然L=R时并不符合区间的书写规范,但我们可以认为是单独增加第L(R)个英雄的身高)
CYZ、光哥和ZJQ等人不信教主的邪,于是他们有时候会问WD闭区间 [L, R] 内有多少英雄身高大于等于C,以验证教主的魔法是否真的有效。
WD巨懒,于是他把这个回答的任务交给了你。
Input
第1行为两个整数N、Q。Q为问题数与教主的施法数总和。
第2行有N个正整数,第i个数代表第i个英雄的身高。
第3到第Q+2行每行有一个操作:
(1) 若第一个字母为“M”,则紧接着有三个数字L、R、W。表示对闭区间 [L, R] 内所有英雄的身高加上W。
(2) 若第一个字母为“A”,则紧接着有三个数字L、R、C。询问闭区间 [L, R] 内有多少英雄的身高大于等于C。
Output
对每个“A”询问输出一行,仅含一个整数,表示闭区间 [L, R] 内身高大于等于C的英雄数。
Sample Input
5 3
1 2 3 4 5
A 1 5 4
M 3 5 1
A 1 5 4
1 2 3 4 5
A 1 5 4
M 3 5 1
A 1 5 4
Sample Output
2
3
3
HINT
【输入输出样例说明】
原先5个英雄身高为1、2、3、4、5,此时[1, 5]间有2个英雄的身高大于等于4。教主施法后变为1、2、4、5、6,此时[1, 5]间有3个英雄的身高大于等于4。
【数据范围】
对30%的数据,N≤1000,Q≤1000。
对100%的数据,N≤1000000,Q≤3000,1≤W≤1000,1≤C≤1,000,000,000。
Source
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<bitset>
#include<algorithm>
#include<cstring>
#include<map>
#include<stack>
#include<set>
#include<cmath>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;
const int maxn = 1E6 + 10;
const int maxm = 1010;
int n,m,Sqrt,belong[maxn],h[maxm][maxm],
from[maxn],to[maxn],num[maxn],Add[maxm];
int getcom()
{
char ch = getchar();
while (ch != 'M' && ch != 'A') ch = getchar();
if (ch == 'M') return 1;
else return 0;
}
int Count(int x,int C)
{
int pos = lower_bound(h[x] + 1,h[x] + h[x][0] + 1,C) - h[x];
if (h[x][h[x][0]] < C) pos = h[x][0] + 1;
return h[x][0] - pos + 1;
}
int main()
{
#ifdef DMC
freopen("DMC.txt","r",stdin);
#endif
cin >> n >> m; Sqrt = sqrt(n);
int L = 1,R = Sqrt,now = 1,C;
for (int i = 1; i <= n; i++) {
scanf("%d",&num[i]);
if (i > R) {
from[now] = L; to[now] = R;
L += Sqrt; R += Sqrt; ++now;
}
belong[i] = now;
h[now][++h[now][0]] = num[i];
}
from[now] = L; to[now] = n;
for (int i = 1; i <= now; i++) sort(h[i] + 1,h[i] + h[i][0] + 1);
while (m--) {
int typ = getcom();
scanf("%d%d%d",&L,&R,&C);
int Start = L % Sqrt == 1?belong[L]:belong[L] + 1;
int End = R % Sqrt == 0?belong[R]:belong[R] - 1;
if (typ == 1) {
if (belong[L] == belong[R]) {
for (int i = L; i <= R; i++) num[i] += C;
h[belong[L]][0] = 0;
for (int i = from[belong[L]]; i <= to[belong[L]]; i++)
h[belong[L]][++h[belong[L]][0]] = num[i];
sort(h[belong[L]] + 1,h[belong[L]] + h[belong[L]][0] + 1);
continue;
}
if (L % Sqrt != 1) {
for (int i = L; i <= to[belong[L]]; i++) num[i] += C;
h[belong[L]][0] = 0;
for (int i = from[belong[L]]; i <= to[belong[L]]; i++)
h[belong[L]][++h[belong[L]][0]] = num[i];
sort(h[belong[L]] + 1,h[belong[L]] + h[belong[L]][0] + 1);
}
for (int i = Start; i <= End; i++) Add[i] += C;
if (R % Sqrt != 0) {
for (int i = from[belong[R]]; i <= R; i++) num[i] += C;
h[belong[R]][0] = 0;
for (int i = from[belong[R]]; i <= to[belong[R]]; i++)
h[belong[R]][++h[belong[R]][0]] = num[i];
sort(h[belong[R]] + 1,h[belong[R]] + h[belong[R]][0] + 1);
}
}
else {
int tot = 0;
if (belong[L] == belong[R]) {
for (int i = L; i <= R; i++)
if (num[i] + Add[belong[i]] >= C)
++tot;
printf("%d\n",tot);
continue;
}
if (L % Sqrt != 1)
for (int i = L; i <= to[belong[L]]; i++)
if (num[i] + Add[belong[i]] >= C)
++tot;
for (int i = Start; i <= End; i++) tot += Count(i,C - Add[i]);
if (R % Sqrt != 0)
for (int i = from[belong[R]]; i <= R; i++)
if (num[i] + Add[belong[R]] >= C)
++tot;
printf("%d\n",tot);
}
}
return 0;
}