1801: [Ahoi2009]chess 中国象棋

1801: [Ahoi2009]chess 中国象棋

Time Limit: 10 Sec   Memory Limit: 64 MB
Submit: 1391   Solved: 802
[ Submit][ Status][ Discuss]

Description

在N行M列的棋盘上,放若干个炮可以是0个,使得没有任何一个炮可以攻击另一个炮。 请问有多少种放置方法,中国像棋中炮的行走方式大家应该很清楚吧.

Input

一行包含两个整数N,M,中间用空格分开.

Output

输出所有的方案数,由于值比较大,输出其mod 9999973

Sample Input

1 3

Sample Output

7

HINT

除了在3个格子中都放满炮的的情况外,其它的都可以.

100%的数据中N,M不超过100
50%的数据中,N,M至少有一个数不超过8
30%的数据中,N,M均不超过6

Source

[ Submit][ Status][ Discuss]


dpdpdp
记f[i][j][k]:放了i行  其中放了j列是只有一个炮的k列有两个炮的
转移方程就不难写出
最后统计下f[n][i][j]就好

GG(组合数写错了,好蠢啊)
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<bitset>
#include<algorithm>
#include<cstring>
#include<map>
#include<stack>
#include<set>
#include<cmath>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;

typedef long long LL;
const LL mo = 9999973;
const int maxn = 110;

int n,m;
LL f[maxn][maxn][maxn],C[maxn][maxn];

int main()
{
	#ifdef DMC
		freopen("DMC.txt","r",stdin);
	#endif
	
	C[0][0] = 1; cin >> n >> m;
	for (int i = 1; i <= max(n,m); i++) {
		C[i][0] = 1;
		for (int j = 1; j <= i; j++) C[i][j] = (C[i-1][j] + C[i-1][j-1]) % mo;
	}
	f[0][0][0] = 1;
	for (int i = 1; i <= n; i++) 
		for (int j = 0; j <= m; j++)
			for (int k = 0; k <= m; k++) {
				if (j + k > m) break;
				if (i == 1 && k) break;
				f[i][j][k] = f[i-1][j][k];
				//if (k) f[i][j][k] = (f[i][j][k] + f[i-1][j+1][k-1])%mo;
				//if (j) f[i][j][k] = (f[i][j][k] + f[i-1][j-1][k])%mo;
				//if (j >= 2) f[i][j][k] = (f[i][j][k] + f[i-1][j-2][k])%mo;
				//if (k) f[i][j][k] = (f[i][j][k] + f[i-1][j][k-1])%mo;
				//if (j < m-1 && k >= 2) f[i][j][k] = (f[i][j][k] + f[i-1][j+2][k-2])%mo;
				if (k) f[i][j][k] = (f[i][j][k] + C[j+1][1]*f[i-1][j+1][k-1])%mo;
				if (j) f[i][j][k] = (f[i][j][k] + C[m-j-k+1][1]*f[i-1][j-1][k])%mo;
				if (j >= 2) f[i][j][k] = (f[i][j][k] + C[m-j-k+2][2]*f[i-1][j-2][k])%mo;
				if (k) f[i][j][k] = (f[i][j][k] + C[m-j-k+1][1]*C[j][1]%mo*f[i-1][j][k-1])%mo;
				if (j < m-1 && k >= 2) f[i][j][k] = (f[i][j][k] + C[j+2][2]*f[i-1][j+2][k-2])%mo;
			}
	LL ans = 0;
	for (int j = 0; j <= m; j++)
		for (int k = 0; k <= m; k++) {
			if (j + k > m) break;
			ans = (ans + f[n][j][k])%mo;
		}
	cout << ans;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值