题目描述
Mayan puzzle是最近流行起来的一个游戏。游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:
1 、每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图6 到图7 );如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图1 和图2);
2 、任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1 到图3)。
注意:
a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图4 ,三个颜色为1 的方块和三个颜色为 2 的方块会同时被消除,最后剩下一个颜色为 2 的方块)。
b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5 所示的情形,5 个方块会同时被消除)。
3 、方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。
上面图1 到图 3 给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0, 0 ),将位于(3, 3 )的方块向左移动之后,游戏界面从图 1 变成图 2 所示的状态,此时在一竖列上有连续三块颜色为4 的方块,满足消除条件,消除连续3 块颜色为4 的方块后,上方的颜色为3 的方块掉落,形成图 3 所示的局面。
输入输出格式
输入格式:
输入文件mayan.in,共 6 行。
第一行为一个正整数n ,表示要求游戏通关的步数。
接下来的5 行,描述 7*5 的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个0 结束,自下向上表示每竖列方块的颜色编号(颜色不多于10种,从1 开始顺序编号,相同数字表示相同颜色)。
输入数据保证初始棋盘中没有可以消除的方块。
输出格式:
输出文件名为mayan.out。
如果有解决方案,输出 n 行,每行包含 3 个整数x,y,g ,表示一次移动,每两个整数之间用一个空格隔开,其中(x ,y)表示要移动的方块的坐标,g 表示移动的方向,1 表示向右移动,-1表示向左移动。注意:多组解时,按照 x 为第一关健字,y 为第二关健字,1优先于-1 ,给出一组字典序最小的解。游戏界面左下角的坐标为(0 ,0 )。
如果没有解决方案,输出一行,包含一个整数-1。
显然是要上搜索的
首先按照字典序从小到大搜,这样搜到就出解
一个方格,如果和旁边的同色,那这样的交换时不必要的,剪枝
相邻两个方格,显然只需要考虑左边的右移,剪枝
两个一起加到dfs,就行了
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<bitset>
#include<algorithm>
#include<cstring>
#include<map>
#include<stack>
#include<set>
#include<cmath>
#include<ext/pb_ds/priority_queue.hpp>
#define FOR(i,l,r) for (int i = l; i < r; i++)
using namespace std;
int n,cnt,br[7][5],bc[7][5],P[7][5],r[10],c[10],typ[10];
struct data{
int t[7][5];
}p;
bool Empty(data g)
{
FOR(i,0,7) FOR(j,0,5)
if (g.t[i][j]) return 0;
return 1;
}
void Down()
{
FOR(j,0,5) FOR(i,0,7) {
if (p.t[i][j]) continue;
int pos = -1;
FOR(k,i+1,7)
if (p.t[k][j]) {
pos = k;
break;
}
if (pos == -1) break;
swap(p.t[i][j],p.t[pos][j]);
}
}
void Work()
{
for (int I = 0; ; I++) {
++cnt; Down();
bool flag = 0;
FOR(i,0,7) FOR(j,0,3)
if (p.t[i][j] && p.t[i][j] == p.t[i][j+1] && p.t[i][j+1] == p.t[i][j+2])
br[i][j] = cnt;
FOR(j,0,5) FOR(i,0,5)
if (p.t[i][j] && p.t[i][j] == p.t[i+1][j] && p.t[i+1][j] == p.t[i+2][j])
bc[i][j] = cnt;
FOR(i,0,7) FOR(j,1,5)
if (br[i][j-1] == cnt && p.t[i][j] == p.t[i][j-1])
br[i][j] = cnt;
FOR(j,0,5) FOR(i,1,7)
if (bc[i-1][j] == cnt && p.t[i][j] == p.t[i-1][j])
bc[i][j] = cnt;
FOR(i,0,7) FOR(j,0,5)
if (br[i][j] == cnt || bc[i][j] == cnt)
p.t[i][j] = 0,flag = 1;
if (!flag) break;
}
}
void Dfs(int now,data f)
{
if (now == n) {
if (!Empty(f)) return;
for (int i = 0; i < n; i++)
printf("%d %d %d\n",c[i],r[i],typ[i]);
exit(0);
}
FOR(j,0,5) FOR(i,0,7) {
if (!f.t[i][j]) continue;
if (j < 4 && f.t[i][j] != f.t[i][j+1]) {
FOR(a,0,7) FOR(b,0,5) p.t[a][b] = f.t[a][b];
swap(p.t[i][j],p.t[i][j+1]);
Work();
r[now] = i;
c[now] = j;
typ[now] = 1;
Dfs(now+1,p);
}
if (j && !f.t[i][j-1]) {
FOR(a,0,7) FOR(b,0,5) p.t[a][b] = f.t[a][b];
swap(p.t[i][j],p.t[i][j-1]);
Work();
r[now] = i;
c[now] = j;
typ[now] = -1;
Dfs(now+1,p);
}
}
}
int main()
{
#ifdef DMC
freopen("DMC.txt","r",stdin);
#endif
cin >> n;
FOR(j,0,5) {
int t,i = 0;
scanf("%d",&t);
while (t) {
P[i++][j] = t;
scanf("%d",&t);
}
}
FOR(i,0,7) FOR(j,0,5) p.t[i][j] = P[i][j];
Dfs(0,p);
puts("-1");
return 0;
}