2824: [AHOI2012]铁盘整理
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 377 Solved: 202
[ Submit][ Status][ Discuss]
Description
在训练中,一些臂力训练器材是少不了的,小龙在练习的时候发现举重器械上的铁盘放置的非常混乱,并没有按照从轻到重的顺序摆放,这样非常不利于循序渐进的锻炼。他打算利用一个非常省力气的办法来整理这些铁盘,即每次都拿起最上面的若干个圆盘并利用器械的力量上下翻转,这样翻转若干次以后,铁盘将会按照从小到大的顺序排列好。那么你能不能帮小龙确定,最少翻转几次就可以使铁盘按从小到大排序呢?
例如:下面的铁盘经过如图2.1所示的以下几个步骤的翻转后变为从小到大排列。
Input
共两行,第一行为铁盘个数N(1≤N≤50)。第二行为N个不同的正整数(中间用空格分开),分别为从上到下的铁盘的半径 R(1≤R≤100)
Output
一个正整数,表示使铁盘按从小到大有序需要的最少翻转次数。
Sample Input
5
2 4 3 5 1
2 4 3 5 1
Sample Output
5
HINT
Source
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<bitset>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;
const int N = 55;
int n,Ans,A[N],B[N];
bool G[101][101];
void Swap(int k)
{
for (int i = 1; i <= k / 2; i++)
swap(A[i],A[k - i + 1]);
}
void Dfs(int now,int tot)
{
if (now + tot >= Ans) return;
bool pass = 1;
for (int i = 1; i < n; i++)
if (A[i] > A[i + 1]) {pass = 0; break;}
if (pass) {Ans = now; return;}
for (int i = 2; i <= n; i++)
{
int Nex = 0; Swap(i);
for (int i = 1; i < n; i++)
if (!G[A[i]][A[i + 1]]) ++Nex;
Dfs(now + 1,Nex); Swap(i);
}
}
int main()
{
#ifdef DMC
freopen("DMC.txt","r",stdin);
#endif
cin >> n; Ans = 2 * n;
for (int i = 1; i <= n; i++) scanf("%d",&A[i]),B[i] = A[i];
sort(B + 1,B + n + 1);
for (int i = 2; i <= n; i++)
G[B[i]][B[i-1]] = G[B[i-1]][B[i]] = 1;
int tot = 0;
for (int i = 1; i < n; i++)
if (!G[A[i]][A[i + 1]]) ++tot;
Dfs(0,tot); cout << Ans << endl;
return 0;
}