4821: [Sdoi2017]相关分析
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 191 Solved: 29
[Submit][Status][Discuss]
Description
Frank对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度、颜色等等,进而估算出
星星的距离,半径等等。Frank不仅喜欢观测,还喜欢分析观测到的数据。他经常分析两个参数之间(比如亮度和
半径)是否存在某种关系。现在Frank要分析参数X与Y之间的关系。他有n组观测数据,第i组观测数据记录了x_i和
y_i。他需要一下几种操作1 L,R:用直线拟合第L组到底R组观测数据。用xx表示这些观测数据中x的平均数,用yy
表示这些观测数据中y的平均数,即
xx=Σx_i/(R-L+1)(L<=i<=R)
yy=Σy_i/(R-L+1)(L<=i<=R)
如果直线方程是y=ax+b,那么a应当这样计算:
a=(Σ(x_i-xx)(y_i-yy))/(Σ(x_i-xx)(x_i-xx)) (L<=i<=R)
你需要帮助Frank计算a。
2 L,R,S,T:
Frank发现测量数据第L组到底R组数据有误差,对每个i满足L <= i <= R,x_i需要加上S,y_i需要加上T。
3 L,R,S,T:
Frank发现第L组到第R组数据需要修改,对于每个i满足L <= i <= R,x_i需要修改为(S+i),y_i需要修改为(T+i)。
Input
第一行两个数n,m,表示观测数据组数和操作次数。
接下来一行n个数,第i个数是x_i。
接下来一行n个数,第i个数是y_i。
接下来m行,表示操作,格式见题目描述。
1<=n,m<=10^5,0<=|S|,|T|,|x_i|,|y_i|<=10^5
保证1操作不会出现分母为0的情况。
Output
对于每个1操作,输出一行,表示直线斜率a。
选手输出与标准输出的绝对误差不超过10^-5即为正确。
Sample Input
3 5
1 2 3
1 2 3
1 1 3
2 2 3 -3 2
1 1 2
3 1 2 2 1
1 1 3
Sample Output
1.0000000000
-1.5000000000
-0.6153846154
HINT
请不要提交,尚无SPJ
Source
鸣谢infinityedge上传
[Submit][Status][Discuss]
要了下数据发现极限数据的确挺极限的。。。
貌似是要用另外一个公式来维护不然就溢出了。。。
a^=∑Ri=L(xi−x¯)(yi−y¯)∑Ri=L(xi−x¯)2=(∑Ri=Lxiyi)−nx¯y¯(∑Ri=Lx2i)−nx¯2
于是我们只要维护区间内 x,y,xy 的和就行了
推推公式大力线段树一波就好
没有SPJ…
存储要用long double,不然溢出了…
中间计算还是要用long double,不然还是溢出…
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<bitset>
#include<ext/pb_ds/priority_queue.hpp>
#define max(a,b) ((a) > (b) ? (a) : (b))
using namespace std;
typedef long double DB;
typedef long long LL;
const int T = 4;
const LL INF = 1E16;
const int maxn = 1E5 + 10;
int n,m;
LL a[maxn],b[maxn],s0[maxn],s1[maxn];
DB sx[maxn*T],sy[maxn*T],sxy[maxn*T],sm[maxn*T],ax[maxn*T],cx[maxn*T],ay[maxn*T],cy[maxn*T];
DB SX,SY,SXY,SM,X,Y;
inline void maintain(int o)
{
sx[o] = sx[o<<1] + sx[o<<1|1];
sy[o] = sy[o<<1] + sy[o<<1|1];
sm[o] = sm[o<<1] + sm[o<<1|1];
sxy[o] = sxy[o<<1] + sxy[o<<1|1];
}
inline void Build(int o,int l,int r)
{
ax[o] = cx[o] = INF;
if (l == r)
{
sx[o] = a[l]; sy[o] = b[l];
sxy[o] = 1LL * a[l] * b[l];
sm[o] = 1LL * a[l] * a[l]; return;
}
int mid = l + r >> 1;
Build(o<<1,l,mid); Build(o<<1|1,mid+1,r);
maintain(o);
}
inline void push_add(int o,LL AX,LL AY)
{
if (ax[o] == INF && cx[o] == INF) ax[o] = AX,ay[o] = AY;
else if (ax[o] == INF) cx[o] += AX,cy[o] += AY;
else ax[o] += AX,ay[o] += AY;
}
inline void push_cov(int o,LL CX,LL CY)
{
ax[o] = INF;
cx[o] = CX; cy[o] = CY;
}
inline void pushdown(int o,int l,int r)
{
if (ax[o] == INF && cx[o] == INF) return;
LL len = r - l + 1;
int lc = (o << 1),rc = (o << 1 | 1),mid = l + r >> 1;
if (ax[o] != INF)
{
sm[o] += ax[o] * ax[o] * len + 2LL * ax[o] * sx[o];
sxy[o] += ax[o] * ay[o] * len + ay[o] * sx[o] + ax[o] * sy[o];
sx[o] += len * ax[o]; sy[o] += len * ay[o];
if (l < r) push_add(lc,ax[o],ay[o]),push_add(rc,ax[o],ay[o]);
}
else
{
sm[o] = cx[o] * cx[o] * len + 2LL * cx[o] * s0[len - 1] + s1[len - 1];
sxy[o] = cx[o] * cy[o] * len + (cx[o] + cy[o]) * s0[len - 1] + s1[len - 1];
sx[o] = (cx[o] + cx[o] + len - 1LL) * len / 2LL;
sy[o] = (cy[o] + cy[o] + len - 1LL) * len / 2LL; LL D = mid - l + 1LL;
if (l < r) push_cov(lc,cx[o],cy[o]),push_cov(rc,cx[o] + D,cy[o] + D);
}
ax[o] = cx[o] = INF;
}
inline void Query(int o,int l,int r,int ql,int qr)
{
pushdown(o,l,r);
if (ql <= l && r <= qr)
{
SXY += sxy[o]; SM += sm[o];
SX += sx[o]; SY += sy[o]; return;
}
int mid = l + r >> 1;
if (ql <= mid) Query(o<<1,l,mid,ql,qr);
if (qr > mid) Query(o<<1|1,mid+1,r,ql,qr);
}
inline void Modify(int o,int l,int r,int ql,int qr,LL AX,LL AY)
{
if (ql <= l && r <= qr)
{
if (ax[o] == INF && cx[o] == INF) ax[o] = AX,ay[o] = AY;
else if (ax[o] == INF) cx[o] += AX,cy[o] += AY;
else ax[o] += AX,ay[o] += AY;
pushdown(o,l,r); return;
}
int mid = l + r >> 1; pushdown(o,l,r);
if (ql <= mid) Modify(o<<1,l,mid,ql,qr,AX,AY); else pushdown(o<<1,l,mid);
if (qr > mid) Modify(o<<1|1,mid+1,r,ql,qr,AX,AY); else pushdown(o<<1|1,mid+1,r);
maintain(o);
}
inline void Cover(int o,int l,int r,int ql,int qr,LL CX,LL CY)
{
if (ql <= l && r <= qr)
{
ax[o] = INF; cx[o] = CX;
cy[o] = CY; pushdown(o,l,r); return;
}
int mid = l + r >> 1; pushdown(o,l,r);
if (ql <= mid && mid < qr)
{
Cover(o<<1,l,mid,ql,qr,CX,CY);
LL D = mid - max(l,ql) + 1;
Cover(o<<1|1,mid+1,r,ql,qr,CX + D,CY + D);
}
else
{
if (ql <= mid) Cover(o<<1,l,mid,ql,qr,CX,CY); else pushdown(o<<1,l,mid);
if (qr > mid) Cover(o<<1|1,mid+1,r,ql,qr,CX,CY); else pushdown(o<<1|1,mid+1,r);
}
maintain(o);
}
inline int getint()
{
char ch = getchar(); int ret = 0,a = 1;
while (ch < '0' || '9' < ch)
{
if (ch == '-') a = -1;
ch = getchar();
}
while ('0' <= ch && ch <= '9')
ret = ret * 10 + ch - '0',ch = getchar();
return ret * a;
}
int main()
{
#ifdef DMC
freopen("DMC.txt","r",stdin);
freopen("1.out","w",stdout);
#endif
n = getint(); m = getint();
for (int i = 1; i <= n; i++) a[i] = getint();
for (int i = 1; i <= n; i++) b[i] = getint();
for (int i = 1; i < maxn; i++)
{
s0[i] = 1LL * i + s0[i - 1];
s1[i] = 1LL * i * i + s1[i - 1];
}
Build(1,1,n);
while (m--)
{
int typ,l,r; LL s,t;
typ = getint(); l = getint(); r = getint();
if (typ == 1)
{
SX = SY = SXY = SM = 0;
Query(1,1,n,l,r); X = SX; Y = SY;
X /= (DB)(r - l + 1); Y /= (DB)(r - l + 1);
DB A = SXY,B = SM;
A -= (DB)(r - l + 1) * X * Y;
B -= (DB)(r - l + 1) * X * X;
printf("%.10lf\n",(double)(A / B));
}
else if (typ == 2)
{
s = getint(); t = getint();
Modify(1,1,n,l,r,s,t);
}
else if (typ == 3)
{
s = getint(); t = getint();
Cover(1,1,n,l,r,s + l,t + l);
}
}
return 0;
}