一、项目分析
1. 项目背景
在当前竞争激烈的市场环境中,企业与客户的关系日益复杂且多变。为了更好地了解客户行为模式,预测哪些客户可能流失,哪些客户可能继续留存,本项目旨在通过机器学习,构建客户流失预测模型。这不仅能够帮助企业及时识别潜在流失客户,采取相应的挽留措施,还能提升企业的客户忠诚度和市场竞争力。
2. 可行性分析
2.1 重要性
客户流失对企业而言是一个巨大的挑战,它不仅影响企业的收入和市场份额,还可能对品牌形象和口碑造成负面影响。因此,构建一个客户流失预测模型对于提高企业竞争力和客户满意度至关重要。
2.2 目的
- 提供数据驱动决策,减少客户流失;
- 企业提前采取预防措施,提高客户留存率。
2.3 现状痛点
- 数据收集不全面,缺乏系统性和连贯性;
- 分析方法简单,难以深入挖掘客户流失的根本原因;
- 预测模型准确性不高,难以为企业提供可靠的决策支持。
2.4 可行性
- 数据分析技术
- 数据可视化技术
- 数据集成技术
- 机器学习
- 输入是什么?
- ⼤量留存和流失的⽤户历史数据
- 输出是什么?
- 先分析这是分类项目还是回归项目?
- 由于分类问题预测的标签是一个离散型变量,回归问题预测的标签是一个连续型变量;而客户的流失或留存属于离散的2种状态,故该项目为二分类预测项目。
- 可以使用分类问题相关的模型,如:逻辑回归、KNN、朴素贝叶斯、支持向量机、决策树和集成学习。
- 输入是什么?
3. 业务场景分析
3.1 目标客户群体
- 企业的所有客户
3.2 使用场景
- 快速识别可能流失的客户,并采取预防措施;
- 针对不同的客户群体,制定个性化的服务方案,提高客户满意度和忠诚度。
3.3 产品需求
- 客户基础信息数据的导入功能
- 现有情况的展示
- 输入客户的基本信息,预测是否有流失的风险,并能生成报告
3.4 预期产品特性
- 强大的数据分析和预测能力
- 界面易用,数据可视化
- 灵活的报告生成工具
- 高度的安全性和数据隐私保护
4. 理论与实践依据
4.1 理论依据
- 各类文献、研究报告参考
4.2 MVP技术
- 前端:Streamlit构建用户界面
- 后端:Python
- 机器学习Scikit-learn数据分析、模型训练