三类人群:
-
领域专家
- 对应用非常了解,知道机器学习,但更关心的是机器学习的模型对产品的影响
- 对业务很了解的人,可理解为提需求的甲方
-
数据科学家
- 会将原始的数据变成机器学习能理解的数据,然后训练模型
- 可理解为乙方
-
AI专家
- 关注某几个点进行进一步提升,提升模型性能精度和性能
数据操作
N维数组是机器学习和神经网络的主要数据结构。
-
标量(0-d):
- 0维数组,表示物体的一个类别,如1.0浮点运算;
-
向量(1-d):
- 一维数组,一个特征向量,即将一个样本抽象成一行数字,如 [1.0, 2.7, 3.4];
-
矩阵(2-d):
- 二维数组,有行和列,一个样本的特征矩阵,如下所示有3行3列:
[ [1.0, 2.7, 3.4]
[5.0, 0.2, 4.6]
[4.3, 8.5, 0.2] ]
-
三维(3-d):
- RGB图片(宽 x 高 x 通道)
-
四维(4-d):
- N个三维数组放一起,如一个RGB图片的批量,(批量大小 x 宽 x 高 x 通道)
-
五维(5-d):
- 一个视频的批量,(批量大小 x 时间 x 宽 x 高 x 通道)
-
张量:
- 表示一个数值组成的数组,这个数组可能有多个维度