01背包【模板】

链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
 

题目描述

你有一个背包,最多能容纳的体积是V。

现在有n个物品,第i个物品的体积为viv_ivi​ ,价值为wiw_iwi​。

(1)求这个背包至多能装多大价值的物品?

(2)若背包恰好装满,求至多能装多大价值的物品?

输入描述:

第一行两个整数n和V,表示物品个数和背包体积。

接下来n行,每行两个数viv_ivi​和wiw_iwi​,表示第i个物品的体积和价值。

1≤n,V,vi,wi≤10001 \le n,V,v_i,w_i \le 10001≤n,V,vi​,wi​≤1000

输出描述:

输出有两行,第一行输出第一问的答案,第二行输出第二问的答案,如果无解请输出0。

输入:

3 5
2 10
4 5
1 4

输出:

14
9

答案:

#include<bits/stdc++.h>
using namespace std;
int dp[1005];
const int inf = 23456789;
int main()
{
	int n , V;
	cin >> n >> V;
	int i , j;
	int v[1005],w[1005];
	for(i = 1; i <= n;i++)
	{
		cin >> v[i] >> w[i];
	}
	int ans2 = 0;
	for(i = 1; i <= n;i++)
	{
		for(j = V;j >= v[i];j--)
		{
			dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
		}
	}
	cout << dp[V] << endl;
	dp[0] = 0;
	for(i = 1; i <= V;i++)
	dp[i] = -inf;
	for(i = 1; i <= n;i++)
	{
		for(j = V;j >= v[i];j--)
		{
			dp[j] = max(dp[j],dp[j-v[i]]+w[i]);
		}
	}
	if(dp[V]<0)
	dp[V] = 0;
	cout << dp[V];
	return 0;
}

答案中使用了动态规划的原理;在第一个双for循环中dp数组中存放了第i个物品存放或不存放时的最大值。存放时背包剩余的体积应当减去该物品的体积即j-v[i]同时dp数组中存放的物品总重量因此当加上w[i];

在第二个双for 循环中内容与第一个一致但此时应当将数组dp初始化为无情小但dp[0]==0此时若背包恰好放下则剩余空间为0此时输出时即为最优解; 

 

 

 

### 回答1: C 01 背包问题是一种经典的动态规划问题。它的基本思想是:给定一个容量为 C 的背包和 N 个物品,每个物品都有自己的体积和价值,求在满足背包容量限制的前提下,能够装入背包中的物品的最大价值总和。 解决该问题的常用模板为: 1. 定义状态:定义 dp[i][j] 表示考虑前 i 个物品,容量为 j 的背包能够装入物品的最大价值总和。 2. 状态计算:根据背包的容量限制和物品的体积和价值,使用递推公式进行状态转移。 - dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]] + w[i]) 其中,v[i] 和 w[i] 分别表示第 i 个物品的体积和价值。 3. 边界:考虑边界条件,dp[0][j]=0,dp[i][0]=0。 4. 计算结果:遍历整个 dp 数组,找到一个使得 dp[N][j] 最大的 j 值,即为答案。 ### 回答2: 01背包问题是指有一个背包,最多能装载一定重量的物品,现有一组物品,其重量和价值分别为wi和vi,求在背包容量限制下,如何选择物品,使得背包中物品的总价值最大化。 解决01背包问题的核心思想是动态规划。创建一个二维数组dp[n+1][W+1],其中n为物品的个数,W为背包的重量限制。dp[i][j]表示在前i个物品中选择,在背包容量为j时的最大总价值。 初始化dp数组的第一行和第一列为0,表示背包容量为0或没有物品可选时,总价值都为0。接下来,开始进行状态转移。 对于每一个物品i,可以选择将其放入背包中或不放入。如果将物品i放入背包中,则背包的容量会减少wi,总价值会增加vi。如果不放入物品i,则背包的容量和总价值都不变。因此,在计算dp[i][j]时,可以根据以下条件进行选择: - 如果j < wi,则无法将物品i放入背包中,此时dp[i][j] = dp[i-1][j]; - 如果j >= wi,则可以选择将物品i放入背包中,即dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)。 最终,dp[n][W]即为问题的解,表示在前n个物品中选择,在背包容量为W时的最大总价值。 通过动态规划算法,可以在时间复杂度为O(nW)的情况下解决01背包问题。这种算法适用于物品数量较小且背包容量较小的情况,效率较高。 ### 回答3: 01背包问题是一个经典的动态规划问题,用来求解在背包容量有限的情况下,如何选择物品放入背包使得总价值最大化。 问题可以描述为:给定n个物品,每个物品有一个重量和一个价值,以及一个容量为W的背包。要求在不超过背包容量的情况下,选取若干个物品放入背包,使得被选取的物品的总价值最大。 定义一个二维数组dp[n+1][W+1],其中dp[i][j]表示前i个物品中,背包容量为j时的最大总价值。 边界条件是dp[0][j] = 0,表示没有物品可选时,背包的总价值为0;和dp[i][0] = 0,表示背包容量为0时,无法选择任何物品,总价值也为0。 对于每一个物品i,有两种选择:放入背包或不放入背包。如果放入背包,则总价值为dp[i-1][j-w[i]] + v[i],其中w[i]是第i个物品的重量,v[i]是第i个物品的价值。如果不放入背包,则总价值为dp[i-1][j]。根据这两种选择,可以得到状态转移方程: dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j]) 最后,dp[n][W]即为问题的解,即前n个物品,在容量为W的背包中,所能达到的最大总价值。 综上所述,C 01背包问题模板的实现可以通过动态规划思想,并利用一个二维数组来保存状态值,最后输出dp[n][W]作为问题的解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值