MySQL百万级数据大分页查询优化

前言:在数据库开发过程中我们经常会使用分页,核心技术是使用用limit start, count分页语句进行数据的读取。 

一、MySQL分页起点越大查询速度越慢

直接用limit start, count分页语句,表示从第start条记录开始选择count条记录 :

select * from product limit start, count

当起始页较小时,查询没有性能问题,我们分别看下从10, 1000, 10000, 100000开始分页的执行时间(每页取20条)。

select * from product limit 10, 20       0.002秒
select * from product limit 1000, 20      0.011秒
select * from product limit 10000, 20     0.027秒
select * from product limit 100000, 20    0.057秒

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为100w看下:

select * from product limit 1000000, 20   0.682秒

我们惊讶的发现MySQL在数据量大的情况下分页起点越大查询速度越慢,300万条起的查询速度已经需要1.368秒钟。这是为什么呢?因为limit 3000000,10的语法实际上是mysql扫描到前3000020条数据,之后丢弃前面的3000000行,这个步骤其实是浪费掉的。

select * from product limit 3000000, 20   1.368秒

从中我们也能总结出两件事情:

  • limit语句的查询时间与起始记录的位置成正比

  • mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。


二、 limit大分页问题的性能优化方法(TODO

(1)利用表的覆盖索引来加速分页查询

MySQL的查询完全命中索引的时候,称为覆盖索引,是非常快的因为查询只需要在索引上进行查找,之后可以直接返回,而不用再回表拿数据。在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何。

select id from product limit 1000000, 20  (时间有毒,居然比select * 还慢,待我查证一下)

那么如果我们也要查询所有列,如何优化?

优化的关键是要做到让MySQL每次只扫描20条记录,我们可以使用limit n,这样性能就没有问题,因为MySQL只扫描n行。我们可以先通过子查询先获取起始记录的id,然后根据Id拿数据:

select * from vote_record where id>=(select id from vote_record limit 1000000,1) limit 20;

(2)用上次分页的最大id优化

先找到上次分页的最大ID,然后利用id上的索引来查询,类似于:

select * from user where id>1000000 limit 100

三、MySQL百万数据快速生成

利用mysql内存表插入速度快的特点,先利用函数和存储过程在内存表中生成数据,然后再从内存表插入普通表中

3.1、创建内存表及普通表

//内存表
CREATE TABLE `vote_record_memory` (
	`id` INT (11) NOT NULL AUTO_INCREMENT,
	`user_id` VARCHAR (20) NOT NULL,
	`vote_id` INT (11) NOT NULL,
	`group_id` INT (11) NOT NULL,
	`create_time` datetime NOT NULL,
	PRIMARY KEY (`id`),
	KEY `index_id` (`user_id`) 
) ENGINE = MEMORY AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8

//普通表
CREATE TABLE `vote_record` (
	`id` INT (11) NOT NULL AUTO_INCREMENT,
	`user_id` VARCHAR (20) NOT NULL,
	`vote_id` INT (11) NOT NULL,
	`group_id` INT (11) NOT NULL,
	`create_time` datetime NOT NULL,
	PRIMARY KEY (`id`),
	KEY `index_user_id` (`user_id`) 
) ENGINE = INNODB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8

3.2、创建函数

//创建函数
CREATE FUNCTION `rand_string`(n INT) RETURNS varchar(255) CHARSET latin1
BEGIN 
DECLARE chars_str varchar(100) DEFAULT 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'; 
DECLARE return_str varchar(255) DEFAULT '' ;
DECLARE i INT DEFAULT 0; 
WHILE i < n DO 
SET return_str = concat(return_str,substring(chars_str , FLOOR(1 + RAND()*62 ),1)); 
SET i = i +1; 
END WHILE; 
RETURN return_str; 
END

3.3、创建插入内存表数据的存储过程

#创建插入内存表数据存储过程,入参n是多少就插入多少条数据
CREATE  PROCEDURE `add_vote_memory`(IN n int)
BEGIN
 DECLARE i INT DEFAULT 1;
 WHILE (i <= n) DO
   INSERT into vote_record_memory  (user_id,vote_id,group_id,create_time ) VALUEs (rand_string(20),FLOOR(RAND() * 1000),FLOOR(RAND() * 100) ,now() );
	 set i=i+1;
 END WHILE;
 END

3.4、创建内存表数据插入普通表的存储过程

此处利用对内存表的循环插入和删除来实现批量生成数据,这样可以不需要更改mysql默认的max_heap_table_size值也照样可以生成百万或者千万的数据。

  • max_heap_table_size默认值是16M。

  • max_heap_table_size的作用是配置用户创建内存临时表的大小,配置的值越大,能存进内存表的数据就越多。

#循环从内存表获取数据插入普通表
#参数描述 n表示循环调用几次;count表示每次插入内存表和普通表的数据量
 CREATE PROCEDURE `add_vote_memory_to_common`(IN n int, IN count int)
 BEGIN
 DECLARE i INT DEFAULT 1;
 WHILE (i <= n) DO
  CALL add_vote_memory(count);
	INSERT INTO vote_record SELECT * FROM vote_record_memory;
	delete from vote_record_memory;
	SET i = i + 1;
 END WHILE;
 END 

3.5、运行存储过程插入数据

#循环调用100次,每次插入1W条数据
add_vote_memory_to_vote(100,10000);

插入一百万条数据,花了2分半钟:

 我执行了两次,查询vote_record表的行记录总数为两百万条:


参考链接:

MySQL的limit使用及解决超大分页问题

MySQL优化之limit分页

mysql 快速生成百万条测试数据

mysql 如何快速生成百万测试数据

MySQL是一款常用的关系型数据库管理系统,当数据量达到百万级时,使用常规的分页查询方法可能会导致查询效率低下,因此需要一些优化建议。 1. 使用索引:在分页查询中,使用合适的索引可以大大提高查询速度。对于分页查询,需要对页码(如LIMIT中的offset)以及排序字段进行索引,以减小查询范围。 2. 建立分区:对于大数据量的,可以根据某个字段对进行分区,将数据分散存储在多个磁盘上,提高查询效率。 3. 避免全扫描:尽量避免使用SELECT *,只选择需要的字段,减少数据传输量,优化查询性能。 4. 使用缓存:使用缓存技术,如Memcached或Redis等,在查询结果比较频繁且变化不大的情况下,可以将查询结果缓存起来,减少数据库的压力。 5. 分批查询:可以将大的查询结果分批获取,每次查询一部分数据,实现逐步加载,减少数据库的负载。 6. 合理使用内存:增大MySQL的缓冲池大小,尽量将数据存储在内存中,减少磁盘IO,提高查询性能。 7. 优化查询语句:合理编写查询语句,避免复杂的JOIN、子查询等操作,可以考虑优化查询语句的写法,减少不必要的计算和查询。 8. 使用查询缓存:对于一些经常被查询数据,可以开启查询缓存功能,将查询结果缓存起来,提高查询性能。 总之,对于百万级数据量的分页查询,需要综合考虑以上建议,并根据具体情况进行优化,合理地使用索引、缓存等技术,以提高查询效率和系统性能。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java架构何哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值