动态规划——包子凑数

题目:包子凑数
小明几乎每天早晨都会在一家包子铺吃早餐。

他发现这家包子铺有 N 种蒸笼,其中第 i 种蒸笼恰好能放 Ai 个包子。

每种蒸笼都有非常多笼,可以认为是无限笼。

每当有顾客想买 X 个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有 X 个包子。

比如一共有 3 种蒸笼,分别能放 3、4 和 5 个包子。

当顾客想买 11 个包子时,大叔就会选 2 笼 3 个的再加 1 笼 5 个的(也可能选出 1 笼 3 个的再加 2 笼 4 个的)。

当然有时包子大叔无论如何也凑不出顾客想买的数量。

比如一共有 3 种蒸笼,分别能放 4、5 和 6 个包子。

而顾客想买 7 个包子时,大叔就凑不出来了。

小明想知道一共有多少种数目是包子大叔凑不出来的。

输入格式
第一行包含一个整数 N。

接下来 N 行,每行包含一个整数 Ai。

输出格式
输出一个整数代表答案。

如果凑不出的数目有无限多个,输出INF。

数据范围
1≤N≤100,
1≤Ai≤100
输入样例1:
2
4
5
输出样例1:
6
输入样例2:
2
4
6

解题思路:
如果n个数的最大公因数d > 1,则只要不是d的倍数就无法凑出
如果n个数的最大公因数d == 1,则在Amax*Amax中有有限的数无法被凑出
以上证明略

那么我们只需要在这个范围中找到所有不能被凑出的数就行了,这个个问题就是一个完全背包问题,其中背包的容量要递推到Amax*Amax
状态函数:f[i][j] 表示在前i个数中选,和为j的数是否能被凑出
状态转移方程:f[i][j] = f[i-1][j] | f[i][j-A[i]]
以最后一个元素为划分依据

#include<iostream>
#include<algorithm>

using namespace std;

const int N = 1010;

int a[110];
int f[110][N];

int gcd(int a, int b)
{
	return b ? gcd(b, a % b) : a;
}

int main()
{
	int n;
	cin >> n; 
	int d = 0;
	for(int i = 1 ; i <= n; i++)
	{
		scanf("%d", &a[i]);
		d = gcd(d, a[i]);
	}
	
	if(d != 1) puts("INF");
	else
	{
		f[0][0] = 1;
		for(int i = 1; i <= n; i++)
			for(int j = 0; j < N; j++)
			{
				f[i][j] = f[i-1][j];
				if(j >= a[i]) f[i][j] |= f[i][j-a[i]];
			}
		
		int cnt = 0;
		for(int i = 1; i < N; i++)
			if(f[n][i] == 0)
				cnt ++;
		cout << cnt << endl;
	}

	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划是研究一类最优化问题的方法,在经济、工程技术、企业管理、工农业生产及军事等领域中都有广泛的应用。近年来,在ACM/ICPC中,使用动态规划(或部分应用动态规划思维)求解的题不仅常见,而且形式也多种多样。而在与此相近的各类信息学竞赛中,应用动态规划解题已经成为一种趋势,这和动态规划的优势不无关系。 1、动态规划的常用名词 在学习动态规划之前,先得对下面的名词有所了解。本书将标准名词作了一些简化,便于大家更好的理解。 (1)状态(smte) 对于一个问题,所有可能到达的情况(包括初始情况和目标情况)都称为这个问题的一个状态。 (2)状态变量(sk) 对每个状态k关联一个状态变量sk,它的值表示状态k所对应的问题的当前解值。 (3)决策(decision) 决策是一种选择,对于每一个状态而言,你都可以选择某一种路线或方法,从而到达下一个状态。 (4)决策变量(dk) 在状态k下的决策变量dk的值表示对状态k当前所做出的决策。 (5)策略 策略是一个决策的集合,在我们解决问题的时候,我们将一系列决策记录下来,就是一个策略,其中满足某些最优条件的策略称之为最优策略。 (6)状态转移函数(t) 从一个状态到另一个状态,可以依据一定的规则来前进。我们用一个函数t来描述这样的规则,它将状态i和决策变量di映射到另一个状态j,记为t(i,di)=j (7)状态转移方程(f) 状态转移方程f描述了状态变量之间的数学关系。一般来说,与最优化问题相应,状态转移方程表示si的值最优化的条件,或者说是状态i所对应问题的最优解值的计算公式,用代数式表示就是: si=f({(sj,dj)|i=t(j,dj),对决策变量dj所有可行的取值})

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值