💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于经济与可靠性双目标的混合配电系统规划及可靠性评估研究
本程序依托文献《Optimal double Q AC - DC hybrid distribution system planning with explicit topology - variable - based reliability assessment》所构建的理论体系,成功构建了针对 AC - DC 混合配电系统的双目标优化规划模型。
在目标设定方面,该模型聚焦于经济性与可靠性两大核心维度。经济性目标涵盖了投资成本、维护成本以及电力生产成本,旨在从成本效益角度对系统规划进行全面考量;可靠性目标则选取了 EENS(期望缺供电量)、SAIFI(系统平均停电频率指标)和 SAIDI(系统平均停电持续时间指标)作为关键评估指标,以精准衡量系统的供电可靠性。
为确保规划方案的科学性与可行性,模型设定了一系列主要约束条件。这些约束条件包括基于基尔霍夫电压定律(KVL)的电压约束、基于基尔霍夫电流定律(KCL)的电流约束、VSC(电压源换流器)换流器模型约束、辐射拓扑约束、节点电压幅值限制以及线路电流容量限制等,从不同层面保障了系统运行的稳定性和安全性。
在具体实现上,本程序以 6 节点配电网系统作为典型案例进行模拟与分析。程序采用 Python 语言进行编写,代码注释详尽清晰,便于使用者理解和二次开发。同时,程序具备出色的图形输出功能,能够直观展示规划结果,为决策者提供有力的数据支持和可视化参考。
一、混合配电系统的定义与组成
混合配电系统是指整合多种能源形式(如可再生能源、传统化石能源)及储能装置的复合型供电网络,其核心在于通过多能源协同实现经济性与可靠性的平衡。具体特征包括:
-
多源互补架构
系统通常由光伏、风电、柴油发电机、电池储能等组成。例如,冰岛的地热-水电混合系统提供基荷稳定电力,而智利的太阳能-风能-电池系统则通过储能平滑间歇性。这种互补性可将容量因子提升10-30%。 -
交直流混合结构
通过交直流母线与变换器实现能量灵活调配。例如,混合配电变压器集群互联系统支持低压交流(LVAC)和直流(LVDC)负荷需求,并通过DC/DC变换器实现微网间的能量交换。此类设计可降低线损率约1.5%。
3. 智能化控制单元
包含电池管理系统(BMS)、DC/DC变换器和分布式能源管理系统(DERMS),用于动态调度能源。例如,CasADi库实现的非线性优化技术可实时调整发电机设定点,使燃料消耗减少20%。
二、经济性规划的关键指标与优化方法
(一)经济性指标体系
-
成本类指标
- 初始投资成本:包括设备购置费(如48V锂离子电池组成本约300元/kWh)、土建费用。
- 运维成本:设备年维护费用通常占初始投资的3%-5%。
- 全寿命周期成本(LCC) :含设备折旧(如铅酸电池寿命周期为5年,年折旧率约20%)及线损成本。
-
效率类指标
- 线损率:传统交流配电网线损率约6%,交直流混合系统可降至4.5%。
- 可再生能源渗透率:高渗透率场景(如>50%)需配置储能以平衡波动。
-
市场响应指标
- 单位负荷成本:通过分时电价策略优化,单位成本可从0.50元/kWh降至0.45元/kWh。
(二)优化策略
-
分层规划模型
- 上层规划:以投资成本最小化为目标,优化储能容量配置。
- 下层规划:以负荷削减量最小为目标,通过原对偶内点法求解N-1故障约束。
-
多目标算法
- NSGA-II算法:用于帕累托前沿求解,例如在电力-天然气-热力综合能源系统中,通过快速非支配排序和拥挤度比较生成最优解集。
- 鲁棒优化:处理风光出力不确定性,如智利混合系统通过鲁棒模型将调峰备用率提高2%。
三、可靠性评估的核心方法
(一)评估指标
-
负荷点指标
- 故障停运率(λ) :典型城市配电网年均停运次数为1.2次。
- 年平均停运时间(U) :通过配置SOP(智能软开关)可将停电时间从30分钟降至20分钟。
-
系统级指标
- SAIDI(系统平均停电时间) :优化后可从1.5小时/户·年降至1.0小时。
- EENS(期望缺供电量) :储能配置可使EENS从100万千瓦时降至80万千瓦时。
(二)评估方法
-
解析法
- 故障模式后果分析法(FMEA) :适用于简单辐射型网络,计算复杂度为O(n²)。
- 最小路法:通过负荷点最短路径分析,可处理备用电源切换场景。
-
蒙特卡洛模拟法
- 序贯蒙特卡洛:模拟全年8760小时运行状态,计算精度误差<2%。
- 混合法:结合FMEA与网络等值法,计算效率提升40%。
-
人工智能方法
- 基于神经网络的可靠性预测:在含DG的配电网中,预测误差<5%。
四、经济性与可靠性的冲突协调策略
(一)冲突来源分析
- 投资成本与可靠性正相关:例如,增加1个SOP节点可使投资成本增加200万元,但SAIDI降低0.3小时。
- 运维成本与故障率负相关:提升设备维护频率(如从年检改为季度检)可将故障率降低15%,但运维成本上升20%。
(二)协调方法
-
多目标优化模型
- 帕累托最优解集:通过NSGA-II算法生成经济-可靠性权衡曲线。例如,某海岛微电网方案中,投资成本减少10%对应SAIDI增加0.5小时。
-
分层规划与博弈论
- 双层模型:上层规划储能容量,下层优化负荷削减策略。
- Stackelberg博弈:供电企业作为领导者制定电价,用户作为跟随者调整用电行为。
-
成本效益分析(CBA)
- 停电损失量化:工业用户停电损失约500元/kWh,居民用户约50元/kWh。据此优化设备冗余度,使边际效益=边际成本。
五、典型案例与技术前沿
-
重力储能系统
在双碳目标下,配置重力储能可使碳排放减少30%,并通过NSGA-II算法实现调峰备用率提升2%。 -
交直流混合微网
某城市示范项目通过DC/DC变换器互联,可再生能源渗透率达60%,线损率降至3.8%。 -
人工智能驱动的预测维护
基于LSTM网络的设备故障预测系统,可将维修响应时间缩短40%,可靠性成本降低15%。
六、未来研究方向
- 多时间尺度协同优化:结合日内调度与中长期规划,提升储能利用率。
- 用户侧参与机制:通过区块链技术实现分布式能源交易,降低电网投资压力。
- 极端场景韧性提升:针对台风、冰冻灾害等设计抗毁性拓扑结构。
📚2 运行结果
2.1 交直流混合配电系统规划架构
上图呈现了交直流混合配电系统(ADHDS)的规划架构,清晰地勾勒出系统中各类元件的构成以及它们之间的连接方式。该架构借助交直流混合的母线与线路,巧妙地将住宅、工业、商业等不同类型的负荷,以及风电、光伏、柴油发电机等分布式电源进行整合,并且融入了储能装置和电动汽车,从而构建出一个具备灵活性与高效性的配电系统架构。
2.2 交直流线路连接关系
- A 型连接模式:交流节点借助交流线路实现直接连通。
- B 型连接模式:交流节点与直流节点依靠直流线路以及位于线路两端的电压源换流器完成连接。
- C 型连接模式:直流节点通过直流线路达成直接相连。
需特别指出,两个交流节点同样能够借助直流线路,并在线路两端分别安装两个电压源换流器来实现彼此连接。不过,这种连接方式在能量转换过程中效率相对较低。
部分代码:
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]仲礼鹏.基于可靠性显式表达的交直流混合配电网规划研究[D].华南理工大学,2022.
[2]仲礼鹏,王梓耀,余涛,等.基于可靠性显式表达的交直流混合配电网规划方法[J].电力系统自动化,2022,46(19):52-61.
🌈4 Python代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取