平稳与非平稳随机信号的理解

本文介绍了随机信号的平稳性和非平稳性的概念。平稳随机信号具有固定的期望值和确定的统计信息,如高斯白噪。而非平稳信号则会引入新的变量,分析时需要加窗处理,例如在STFT中。加窗有助于减少频域干扰,但选择合适的窗类型和周期至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        最近在做stft的相关算法,发现stft的前提条件是在窗函数内信号必须被认为是平稳随机信号,随机信号的平稳和非平稳有什么区别么?总结如下:

        1、首先理解随机信号概念,随机信号理论上讲是不能利用公式复现的,每次的测量值不代表真实值,只能叫做观测值,所以要引入统计分布的概念,也就是说信号在某一个时刻值只有一个概率上的分布,如果感觉理解费劲,那就理解一下它的反义词“相关”,相关是指一个信号某一个时刻的值可以由之前时刻的值推出来,也就是一段时刻的值可以用公式表示,比如cos,sin等。

        2、平稳的随机信号可以理解为虽然信号在某一个时刻的值呈现概率分布,但是整体上这个信号是有规律可循的,比如它的期望是一个固定值,常见的白噪就是一个平稳的随机过程,以高斯白噪为例,高斯白噪两大特点:1、期望是0,2、“幅度服从正态分布,功率服从均匀分布”。参考:

如何理解高斯白噪

也就是说,这个随机信号虽然也不能预测,但是统计信息确定,可以通过一段时间的观察之后收集到全部的统计信息。

        3、非平稳的随机信号就是随时会引入新变量的信号,这种信号如果需要传统的dft来进行频域分析,必须先给时域信号加窗,如果不加窗,会导致一个长时间内的频域会出现很多高功率频段,且无法分辨各个频段的到来时间,所以首先要给时域信号加窗,之后再分析。

        4、加窗需要主要窗周期和窗类型,这个放到后面分析。

        回归提出的问题,这下能理解为什么需要做stft时要将窗内信号看作是平稳随机过程了吧。(都是废话,因为要还不平稳我还加窗干啥,不过实际中处理还是会遇到频段干扰的问题,这就得根据实际信号的形式选择窗形式和周期了)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值