E - 解方程(牛客小白月赛31)
原题链接:https://ac.nowcoder.com/acm/contest/10746/E
题目描述
给出两个正整数 a,b,计算满足方程 ax+by=x*y 的正整数(x, y) 的组数。
输入描述
输入的第一行有一个正整数 t 测试数据的组数。
每组测试数据在一行中给出两个正整数 a, b。
1 ≤ t ≤ 10 ^ 3
1 ≤ a, b ≤ 10 ^ 6
输出描述
输出一个数字表示答案
保证答案小于2 ^ 31
示例
说明
对于第一组满足条件的(x,y)为(3,3),(4,2)
对于第二组满足条件的(x,y)为(4,8),(5,5),(6,4),(9,3)
【思路】
ax + by = xy
ax + by + ab = xy + ab
ab = xy + ab - ax - by
ab = (y - a)(x - b)
所以可以发现,要求方程解的个数,其实就是找ab的因子个数。比如说ab = 18,那么(y - a) 对应的可以取到1,2,3,6,9,18,当(y - a)确定时,只有唯一一个(x - b)与之对应,因为a、b是确定的,所以每一组x和y也是唯一的(即不会出现重复)。
那么还有一个问题就是,有没有可能出现 (y - a)= -3, (x - b)= -6 的情况?
乍一看好像可以,但其实不用考虑负数的情况。
比如说a = 3, b = 6,那么ab = (y - a)(x - b)使得要么x = y = 0,要么xy < 0(即x和y有一个为负数),这和题意要求的xy均为正整数矛盾。
综上,答案即ab因子总数。
为了避免超时,这里用了约数个数定理求ab的因子总数。
简单来说,每一个正整数都可以分解成若干个质数相乘,那么对于18 = 2 * 3 * 3,可以看出18由1个2和2个3相乘得到,那么18的因子个数就是(1 + 1)* (2 + 1)= 6个。
//E
#include<iostream>
#include<algorithm>
#include<stdlib.h>
#include<cstring>
#include<string>
#include<cmath>
#include<queue>
using namespace std;
#define ll long long
#define getlength(array,len) {len = (sizeof(array) / sizeof(array[0]));}
const int N = 1000030;
//线性筛法求素数
int primes[N], cnt; // primes[]存储所有素数,从0开始存
bool st[N]; // st[x]存储x是否被筛掉,素数--false,合数--true
void get_primes(int n)
{
for (int i = 2; i <= n; ++ i)
{
if (!st[i]) primes[cnt ++ ] = i;
for (int j = 0; primes[j] <= n / i; j ++ )
{
st[primes[j] * i] = true;
if (i % primes[j] == 0) break;
}
}
}
int main() {
int t;
scanf("%d", &t);
get_primes(N - 3); //做素数表
while (t --) {
ll a, b;
scanf("%lld %lld", &a, &b);
ll num = a * b;
int ans = 1;
if (num == 1) printf("%lld\n", ans);
else {
int k = 0;
//用约数个数定理求因子个数
while (num > 1) {
if (num % primes[k] == 0) {
int cnt = 0;
while (num % primes[k] == 0) {
++ cnt;
num /= primes[k];
}
ans *= (cnt + 1);
}
++ k;
}
printf("%lld\n", ans);
}
}
return 0;
}