提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
今日学习目标
找树左下角的值(513)
路径总和(112)
从中序与后序遍历序列构造二叉树(106)
一、算法题
1.找树左下角的值
题目:
给定一个二叉树的 根节点 root,请找出该二叉树的最底层最左边节点的值。
假设二叉树中至少有一个节点。
示例 1:
输入: root = [2,1,3]
输出: 1
思路:本题采用层序遍历,记录左边第一个节点的值,不断循环,该值会被覆盖,最后保留下来的就是最后一层最左侧节点的值。
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int findBottomLeftValue(TreeNode* root) {
queue<TreeNode*> que;
int result = 0;
if(root != NULL) que.push(root);
while(!que.empty()){
int size = que.size();
for(int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
if(i == 0) result = node->val;
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
}
}
return result;
}
};
2.路径总和
题目:
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22
输出:true
解释:等于目标和的根节点到叶节点路径如上图所示。
思路:
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
bool traversal(TreeNode* cur, int count) {
if(cur->left == NULL && cur->right == NULL) {
if(count == 0) {
return true;
} else {
return false;
}
}
if(cur->left) {
if(traversal(cur->left, count - cur->left->val)) return true;
}
if(cur->right) {
if(traversal(cur->right, count - cur->right->val)) return true;
}
return false;
}
bool hasPathSum(TreeNode* root, int targetSum) {
if(root == NULL) return false;
return traversal(root, targetSum - root->val);
}
};
3.从中序与后序遍历序列构造二叉树
题目:
给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
示例 1:
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3]
输出:[3,9,20,null,null,15,7]
思路:
有些复杂,重点在于划分中序遍历数组和后序遍历数组,第一次刷直接看教程比较好https://programmercarl.com/0106.%E4%BB%8E%E4%B8%AD%E5%BA%8F%E4%B8%8E%E5%90%8E%E5%BA%8F%E9%81%8D%E5%8E%86%E5%BA%8F%E5%88%97%E6%9E%84%E9%80%A0%E4%BA%8C%E5%8F%89%E6%A0%91.html#%E6%80%9D%E8%B7%AF
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* traversal(vector<int>& inorder, vector<int>& postorder) {
//第一步
if(postorder.size() == 0) return NULL;
//第二步:后序遍历数组最后一个元素,就是当前的中间节点
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);
//叶子节点
if(postorder.size() == 1) return root;
//第三步:找切割点
int delimiterIndex;
for(delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if(inorder[delimiterIndex] == rootValue) break;
}
//第四步:分割数组、
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end());
//第五步:切割后序数组
postorder.resize(postorder.size() - 1);
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
//第六步
root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, postorder);
}
};
今日心得
最后一题比较难理解,第二题晚间复习的时候只记得一点思路,还需要重复练习。
学习及参考书籍
代码随想录