【收藏】AI智能体开发避坑指南:从需求分析到商业落地的完整方法论

文章介绍了一套AI智能体开发的系统方法论,强调先明确用户、场景和需求,而非急于编码。包括需求与场景定义、需求分析、平台选择、LLM选择、工具选型、提示词编写、数据存储、UI构建、测试评估和部署发布十个步骤。重点指出许多智能体虽有技术价值但缺乏商业价值,只有解决实际痛点才能创造价值,适合开发者参考收藏。


学习智能体的这段时间,我发现一个比较有意思的现象,就是大多数市面上的智能体只有价值,没有商业价值。

有的智能体功能看起来很炫酷,但就是解决不了一点实际问题,有的智能体却能帮助企业实现 300% 提效。

这是因为大多数人在制作一个普通智能体或运用在商业的智能体上,他们都没有一套系统的方法论。

可以说很多人在制作智能体的时候,都在自嗨,甚至连受众用户群体都没了解过。

因此,我们在制作智能体的时候,不应该急着写代码,梳理工作流,而是坐下来好好规划一下:这个 Agent 到底是谁在用?能解决什么痛点?它的场景是什么?

先把这些问题想清楚,才能少走弯路,释放 Agent 的价值。

今天我就讲述一套我个人搭建 Agent 的方法论。

需求与场景定义

需求是指个体或系统在特定条件下为实现某种目标或维持某种状态所必需的资源、条件或服务。

场景定义了用户使用产品或服务时的行为,需求以及互动方式,帮助我们更好的理解用户的体验和期望。

怎么样?是不是说了跟没说一样?哈哈,说点人话。

其实我们在做一个智能体之前,我们就需要调研一些场景,从中寻找一些可能存在的痛点需求。

一个智能体当它能够解决目标用户的需求时,才能留住目标用户,才可能有商业价值。

但需求只有在场景下,才会被体现出来。

举个例子:上周我在面试,发现一些写字楼楼下开有一些什么广告,打印,复印店,我去店里打印自己的简历,发现店里的生意还是很不错的,我都需要等一段时间才轮到我打印。

如果这些打印店开在一些繁华的商业街,它当然也有生意,但大概率不会比写字楼下的生意好。

因为在写字楼下的打印店,它已经有明确的场景,明确的需求,且需求频率较高,同时目标受众基本也确定了。

由此,我们可以知道,在确定需求前,我们应该先确定场景,再确定目标用户,最后再定义需求,而不是直接就定义需求就完事了。

因为你认为的需求,它在某些场景下不一定是真需求,就算它是真需求,它在某些场景下,它也没那么紧急或频繁。

所以,我们在做一个智能体之前,我们需要考虑好它在应用场景中目标用户的需求,需求紧急度怎么样,频率怎么样,如果是一次性的,那么用户用完就走了。

当然,如果是企业内部提效,场景和需求已经确定了,这一步直接跳过。

需求分析

当我们确定好场景,目标用户,以及需求之后,我们下一步就要对需求进行梳理,进行分析。

那么我们该分析什么东西?又怎样去做分析?

首先,我们要明确的是,我们做这个 AI Agent 是帮我们解决什么样的问题。

比如我是一位做自媒体的人,我就会做一个来帮我解决重复性工作的 AI Agent ,比如找选题,找热点,做用户分析。

其次,我们要进行工作流的拆解,这一步我们要时刻记住,我们该分析,该梳理的那些步骤,是重复的,机械化的步骤,且越详细越好。

当然,这时候我们也可以使用 AI 进行协助,充分的利用 AI 的思考能力,减少自己的工作时间,但我更希望你能独立思考,这对你来说十分有益。

作为一位工作流梳理专家,麻烦你帮我梳理一下“自媒体编辑”这个角色在日常工作中需要重复执行的任务,并且标注出哪些任务可以由 AI 来协助,哪些任务需要我亲自完成。请先以表格形式输出,表格包含三列:工作内容、AI 协助、人工来做。当我认为表格内容完整后,我会回复“继续”,随后请你以 Mermaid 流程图的形式输出,每个流程节点需注明是否可由 AI 协助完成,流程图为横向。梳理过程中,请明确可能涉及的工具。

最好我们能输出一个需求文档,流程图。

选择平台

分析完需求之后,我们就该选择合适的 AI Agent 的平台了,这里只需要根据自己的需求进行选择即可。

Coze,云端 AI Agent 快速搭建,插件类型丰富,多 Agent 协作,拖拽式工作流,但不能在本地。

Dify,开源灵活,通过可视化的界面,极大地简化了开发流程,不仅面向个人开发者,它还提供了企业级的解决方案。

FastGPT,知识问答优化方面强。

新手直接使用 Coze,Dify 无代码平台。

选择 LLM

选择完平台以后,我们就该考虑选择大模型了,那么我们该如何选择大模型呢?

答案是根据你的具体使用场景进行选择,如果你的场景比较的复杂,就可以考虑混合使用了。

但我建议你去深入了解一下不同模型的能力,现在海外的 ChatGPT,Claude,Gemini等,国内的也有 Kimi,通义千问,DeepSeek,豆包等。

每个模型有每个模型的优势特点,不要啥啥场景都用一个模型,要最大发挥模型的优点。

比如

  • 该模型的领域专精度怎么样?
  • 该模型的处理上下文的窗口长度怎么样?
  • 该模型的算力,推理能力怎么样?
  • 该模型的价格怎么样?
  • 该模型会不会泄露用户隐私数据?

如果你选择海外的模型,我建议选择 OpenAI 和 Claude 毕竟是属于头部的大模型,国内的大模型的话,毫无疑问了直接选 DeepSeek 即可,最近 DeepSeek 也是迭代更新了,有兴趣的朋友可以看看。

选择工具

在AI Agent开发中,工具选型是构建智能体能力体系的核心环节。工具作为智能体的"感官与肢体",可分为两大技术实现路径

标准化接口工具(API驱动),有 API 接口的工具,对接就比较的简单,在 Coze,Dify 平台上,已经集成了许多工具,直接配置就行了。

非结构化系统交互(RPA驱动)通过计算机视觉(CV)与操作系统级自动化,模拟人类键鼠操作的自动化工具。

写提示词

提示词是 AI Agent 的核心,只有好的的提示词,大模型才能输出好的答案。

之前 DeepSeek 爆火的时候,我一度认为已经不需要提示词了,但后面发现没有好的提示词,DeepSeek 的回答很容易用力过猛。

所以,在我不怎么使用提示词用了一些推理模型一段时间之后,又乖乖回去使用提示词了。

毕竟

  • 好的提示词能帮助 AI Agent 准确地理解任务,提升大模型的回答质量。
  • 好的提示词可以减少 token 的消耗,降低钱的成本。
  • 好的提示词在后续的修改,扩充和调试都很方便。
  • 好的提示词能节约上下文的窗口空间。
  • 好的提示词可以减少大模型的响应延迟,提高回复的速度。

除了掌握如何编写有效的提示词以外,我们还要了解提示词和大模型两者之间的交互规则是怎么样的,毕竟知己知彼,百战不殆。

比如

  • 对于模型生成的一些重要信息,尤其是那种涉及专业领域,决策依据等方面的内容。
  • 不要故意输入恶意或诱导的内容,让模型生成有害,不适当或虚假的信息,会导致不良后果。
  • 尽量让交互方式和语言风格适应用户的习惯和偏好,使交流更加流畅。
  • 模拟用户提一些刁钻的问题,拒绝一些完美的话术,迫使其发生错误。

数据存储

在我们使用 AI Agent 的时候,必然会产生一些数据,比如聊天记录,实时采集的信息,这时候我们就要使用数据库将这些重要的数据进行存储。

对于那些敏感的数据,我们就本地存储,对于那些非敏感数据,我们就可以选择云端。

同时,对于搞技术的人,直接使用 MySQL 这种常用的数据库就行,我也用的这个。

对于那些非技术人员的话,我常见的就是使用飞书文档了。

构建 UI

博主还在学,后期该内容再更新一篇,后面再写吧,抱歉。懂得可以联系俺,教一下俺。

测试评估

当 AI Agent 开发完之后,我们就要进行测试了,做软件开发需要测试,这个也是不例外。

测试方面的话,对于我们这种新手,主要考虑以下几个方面。

功能测试:验证任务执行的完整性,防止执行一半,中断没数据了,我就遇到过。

压力测试:模拟高并发的一些请求。

AB测试:对比一些不同模型,不同提示词的一些效果。

在评估方面的话,我们主要关注两个点就够了。

准确性:关键人物完成率,比如我们搭建了一个客服 AI Agent ,这时候我们就要看客服回答的正确率。

成本:这个必须考虑,主要看单次调用 Token 消耗是多少。

部署发布

测试你感觉没问题,那我们就要发布使用了,不同的 AI Agent 开发平台有不同的部署方式。

有的是云端部署,有的是本地的部署,看情况操作即可。

在发布完成后,我们还要对日志进行监控分析,追踪存在的一些异常行为。

同时,我们也要持续迭代,比如定期更新知识库与模型版本,要跟上时代,懂吧兄弟。

总结

今天,我们讲了一套搭建 AI Agent 的方法论,这套方法论适用于大多数情况,不能说全部,里面还有很多细节,需要我们去考虑。

主要的步骤分为 需求与场景定义 —> 需求分析 —> 选择平台 —> 选择 LLM —> 选择工具 —> 写提示词 —> 数据存储 —> 构建UI —> 测试评估 —> 部署发布。

方法并非一成不变,将来我会在不断的实践中调整方法,所以这个方法论也会持续更新,一段时间更新一篇吧,文章内容不会使用花里胡哨的词句,只讲大家听得懂的内容!

AI时代,未来的就业机会在哪里?

答案就藏在大模型的浪潮里。从ChatGPT、DeepSeek等日常工具,到自然语言处理、计算机视觉、多模态等核心领域,技术普惠化、应用垂直化与生态开源化正催生Prompt工程师、自然语言处理、计算机视觉工程师、大模型算法工程师、AI应用产品经理等AI岗位。

在这里插入图片描述

掌握大模型技能,就是把握高薪未来。

那么,普通人如何抓住大模型风口?

AI技术的普及对个人能力提出了新的要求,在AI时代,持续学习和适应新技术变得尤为重要。无论是企业还是个人,都需要不断更新知识体系,提升与AI协作的能力,以适应不断变化的工作环境。

因此,这里给大家整理了一份《2025最新大模型全套学习资源》,包括2025最新大模型学习路线、大模型书籍、视频教程、项目实战、最新行业报告、面试题等,带你从零基础入门到精通,快速掌握大模型技术!

由于篇幅有限,有需要的小伙伴可以扫码获取!

在这里插入图片描述

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

为什么大家都在学AI大模型?

随着AI技术的发展,企业对人才的需求从“单一技术”转向 “AI+行业”双背景。企业对人才的需求从“单一技术”转向 “AI+行业”双背景。金融+AI、制造+AI、医疗+AI等跨界岗位薪资涨幅达30%-50%。

同时很多人面临优化裁员,近期科技巨头英特尔裁员2万人,传统岗位不断缩减,因此转行AI势在必行!

在这里插入图片描述

这些资料有用吗?

这份资料由我们和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

大模型全套学习资料已整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】

在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值