- 博客(1559)
- 收藏
- 关注
原创 盘点50个AI大模型企业和典型产品
ChatGPT:是OpenAI推出的非常具有影响力的聊天机器人程序,能够进行自然流畅的对话、文本创作、问题解答等,不断迭代升级,引发了全球对大模型的广泛关注。- GPT-4O:OpenAI的新一代AI模型,在语言理解和生成能力上有进一步提升,能够感知用户的情绪,并针对问题以带有情绪的“嗓音”做出反馈。- Sora:文生视频大模型,可根据文本指令生成复杂且具有一定时长的视频,具有多个镜头、准确的角色和视觉风格保留等特点,但仍在开发完善中。
2024-10-10 16:54:30
3873
原创 9款GPU横评,哪些适合大模型训练,哪些适合推理任务?
在 AI 领域,有两大场景对 GPU 的需求最大,一个是模型训练,另一个是 AI 推理任务。但是很多人多可能在最开始为自己的项目做 GPU 选型时,都很难判断哪些 GPU 适合做模型训练,哪些 GPU 更适合去做推理任务。所以我们通过这篇文章将基于 GPU 指标来帮助大家对比分析NVIDIA 的 H100、A100、A6000、A4000、V100、P6000、RTX 4000、L40s、L4 九款GPU,哪些更推荐用于模型训练,哪些则更推荐用于推理。
2024-09-24 15:10:47
11510
原创 大模型学习路线(超全面!超详细!)收藏这一篇就够了!
在深度学习领域,"大模型"通常指的是模型参数数量庞大、拥有深层结构的神经网络。这些模型的规模通常表现为网络中的参数数量,即模型中需要学习的权重和偏置的数量。具体来说,大模型可能包含数百万到数十亿的参数。
2024-09-23 11:59:31
4402
原创 深度学习必备框架:7步轻松搞定 Pytorch 基础!
接下来我们定义网络结构,由于是图像分类任务,因此我们的节点维度使用逐步降低的定义。nn.Flatten(), # 将维度转换为二维nn.Linear(784, 256), # 全连接层nn.ReLU(), # 激活函数nn.Linear(256, 10) # 全连接层。
2023-01-30 10:02:57
2840
原创 必存干货!Java程序员转AI大模型:从编码到AI的职业跃迁指南
AI大模型不是来替代Java程序员的,而是来帮你“升级”的。转型大模型,你不用放弃多年的技术积累,反而能让Java能力发挥更大价值——用AI提升开发效率,用Java保障系统稳定,这种复合型人才正是市场最缺的。现在大模型人才缺口大,技术门槛还没那么高,正是Java程序员入局的最佳时机。花1-2个月学完Spring AI和PyTorch基础,做一个实战项目,你的简历就能在众多求职者中脱颖而出。
2025-12-18 12:01:08
170
原创 【必藏】大模型应用架构详解:安全过滤、提示工程到向量数据库的完整指南
大型语言模型(LLM)应用架构远比简单的输入输出复杂,包含安全过滤器、提示模板、示例选择器、Agent、模型编排、结构化输出、向量数据库、记忆系统和缓存等关键组件。这些组件共同确保了LLM应用的安全性、准确性和高效性,使系统能够处理复杂任务、保持上下文连贯、扩展知识盲点,并优化性能。理解这些组件对于构建高质量的LLM应用至关重要。大型语言模型(LLM)在应用中有着复杂的架构,它不仅涉及基本的输入输出.还包括安全过滤、提示优化和示例选择等多个关键组件,以确保响应的安全性与准确性。
2025-12-18 12:00:08
372
原创 【值得收藏】大模型实战教程:从基础原理到企业应用,零门槛掌握AI开发
深蓝没用任何 AI 算法,就是硬件穷举棋步。「智能冰箱」是 AI 吗?一种观点:基于机器学习、神经网络的是 AI,基于规则、搜索的不是 AI。这三个案例展示了如何通过大模型优化企业业务流程。智能客服、供应链优化和生产线质量控制是大模型应用的重要领域,通过自动化、预测和优化,企业能够提高效率、降低成本,并提供更好的客户体验。通过结合大模型的强大能力,企业可以快速应对变化,提升竞争力。
2025-12-18 11:57:43
182
原创 【收藏】一文掌握AI Agent:2025年从理论到落地的技术全貌
AI Agent是将大模型与工具系统结合的智能体,具备自主决策、持续学习、多模态交互、工具集成和多智能体协作五大特征。其技术架构包含感知、决策、执行、记忆和反馈优化六大模块,能完成从目标解析到任务执行的全流程。AI Agent改变了传统人机交互模式,支持目标导向、事件触发、人机协作和多智能体协同四种工作方式,可应用于电商监测、智能客服等场景。通过反思机制和强化学习实现自我优化,AI Agent正成为新一代智能基础设施,为企业流程重构和个人数字助理提供技术支持。
2025-12-17 19:46:28
427
原创 收藏!RAG与知识图谱协同推理:构建不会“胡说八道“的企业级问答系统
RAG与知识图谱融合构建企业智能问答系统:本文探讨了RAG(检索增强生成)与知识图谱在企业智能问答系统中的协同应用策略。针对RAG易产生幻觉和KG覆盖有限的短板,提出三种融合方法:先RAG后KG验证、先KG后RAG自然化表达、并行融合综合评判。文章详细介绍了防错机制(双向验证、时效过滤、LLM仲裁、反馈闭环)和工程化落地方案,通过案例展示如何构建可靠的企业级问答系统。强调融合不是简单技术叠加,而是推理协同与事实校验,为AI系统实现"查证"能力提供实践路径。
2025-12-17 19:45:46
710
原创 【收藏必备】一文读懂AI Agent架构:从核心组件到实战应用的完整指南
AI Agent架构由感知、知识库、推理、行动和学习五大模块构成闭环系统,包含反应式、推理式、混合式和学习型四种主流架构类型。设计需考虑可扩展性、鲁棒性等特性,多智能体系统通过通信协议实现协作。目前已在智能助手、自动驾驶等领域广泛应用,未来将与LLM深度融合,向多智能体协作方向发展。掌握AI大模型技术将成为把握未来就业机会的关键,需要系统学习相关知识和实践技能。
2025-12-17 19:37:30
580
原创 【必收藏指南】上下文工程:超越Prompt Engineering,构建高性能企业级LLM应用的系统方法
上下文工程是构建下一代AI应用的关键方法,通过整合RAG、智能体协调和记忆管理形成动态闭环系统。它包含智能决策、工具调用、短期记忆(聊天历史)和长期记忆(数据库/RAG)等组件,能显著提升模型准确性、执行能力和对话一致性。这一系统性方法超越了传统提示工程,成为开发高性能企业级AI应用的基石,使LLM能在持续优化的信息环境中运行。
2025-12-17 19:36:29
499
原创 【收藏必备】从零掌握智能体:大模型函数调用机制与Langgraph框架解析
智能体本质是大模型的函数调用能力,框架只是对原生能力的封装。Langgraph框架的核心是State(状态)、Nodes(节点)和Edges(边),节点完成工作,边决定流程,State传递参数。该框架支持顺序和并行节点执行,StateGraph可保存中间结果,支持智能体状态恢复。开发智能体应先理解运行机制,再掌握框架使用。智能体的基础是大模型的函数调用,而框架只是对其能力的封装。
2025-12-17 14:39:35
355
原创 收藏!35岁Java程序员被优化后逆袭:AI大模型才是破局关键
最近看到一组数据:2025年AI相关岗位的招聘需求里,60%都要求掌握至少一种后端语言,Java程序员的转型优势排在第一。很多人觉得AI是年轻人的游戏,可老李的经历证明:有技术沉淀的老兵,只要找对方向,反而能跑得更快。如果你也是Java开发者,不管是刚入行的小白,还是卡在35岁瓶颈的老鸟,都别再把AI当成“Python专属”。现在就行动起来:花一周时间熟悉Spring AI的基础API,用阿里云百炼平台做第一个调用实验,把AI集成到你正在做的Java项目里——这些看似微小的步骤,终将变成你职场破局的底气。
2025-12-17 14:38:46
317
原创 收藏必备!大模型训练基础概念详解,助你快速入门LLM
本文详细介绍了大语言模型(LLM)的五大训练基础概念:预训练阶段让模型通过无监督学习大量文本知识;有监督微调(SFT)赋予模型对话能力;人类反馈强化学习(RLHF)优化回答质量;知识蒸馏(KD)提升小模型性能;LoRA实现高效参数微调。文章还阐述了LLM作为自回归模型的训练流程,包括输入输出处理、损失函数和学习率设置等关键要素,为理解大模型训练提供了全面的基础知识。(Pretrain)LLM 首先要学习的并非直接与人交流,而是让网络参数中充满知识的墨水,“墨水” 理论上喝的越饱越好,产生大量的对世界的知识积
2025-12-17 14:37:10
305
原创 人人都在谈大模型,但90%的企业AI转型,都死在了数据这一关
从CEO到一线员工,几乎所有人都在热烈地讨论着大模型的最新进展和各种眼花缭乱的AI应用。我们仿佛进入了一个模型为王的时代,似乎只要接入最强的模型,就能解决所有问题。但现实是残酷的。
2025-12-16 18:30:42
740
原创 【技术收藏】Claude Skills深度解析:停止构建Agent,打造可复用技能架构,让AI变身专业专家!
Claude团队推出Skills架构,倡导停止构建Agent,转而开发可复用的专业技能模块。Skills作为有组织的文件夹,包含脚本、代码和资源,让Agent从"通才"转变为"专业专家"。支持版本控制和持续学习,形成基础、第三方和企业定制三类技能生态。与MCP服务器协同构成新架构,为AI提供集体演进的知识库,让Agent更聪明、更专业、更高效。
2025-12-16 18:29:46
671
原创 Java开发者AI转型路线图:从CRUD到AI架构师的4种路径+实战项目(建议收藏)
Java开发者向AI大模型转型的机遇与路径 摘要:本文探讨了Java开发者向AI大模型领域转型的独特优势与实施路径。Java开发者具备的工程化思维和企业级开发经验可有效迁移至AI项目,转型需重点强化数学基础和大模型专项能力。文章提出了渐进式转型模式,包括AI赋能传统开发或转向全栈AI工程师两种路径,并详细对比了Java与AI技术栈的对应关系。同时给出了分阶段学习计划、实战项目建议及常见转型陷阱的规避策略,建议采取"保Java攻AI"策略,将现有工程经验转化为AI领域的竞争优势。
2025-12-16 18:28:13
686
原创 收藏!2025大模型风口已至,程序员转型必看指南
当人工智能从“实验室技术”蜕变为“产业刚需”,大模型已然成为企业竞争的战略制高点。它不仅在医疗影像诊断、金融风险预测、智能制造质检等领域掀起效率革命,更给技术从业者开辟了一条宽赛道——这里既有技术迭代的快感,更有职业增值的无限可能。对程序员而言,这不是“跨界冒险”,而是“顺势而为”的职业升级。薪资壁垒突出,涨幅领跑行业:据智联招聘2025年Q1数据,大模型应用开发、算法优化等岗位起薪普遍比传统开发高出40%-60%,阿里P7级大模型工程师年薪突破120万已成常态,薪资增长曲线是传统IT岗位的2-3倍。
2025-12-16 14:30:23
616
原创 【珍藏版】大语言模型训练全流程详解:从基础模型到AI助手的蜕变
以上就是大语言模型训练的三大阶段。如今,DeepSeek等公司已开始实现与OpenAI比肩的性能,同时开源其训练方法。这意味着我们可以探索如何调整训练流程的各个环节,从而彻底革新大语言模型的表现。
2025-12-16 14:27:49
752
原创 从入门到精通:RAG技术解决LLM幻觉问题,程序员必学干货
RAG技术为我们打开了一扇门。它让我们能将通用大模型的强大推理能力,与特定、私有的知识体系完美结合。它让AI从一个“什么都懂一点”的通才,变成了一个可以阅读资料,深入我们业务、解决具体问题的专家。
2025-12-16 14:26:22
557
原创 【收藏必看】Google重磅发布!AI开发进入“上下文工程“时代,让Agent拥有长期记忆和个性化灵魂
Google发布《Context Engineering: Sessions, Memory》白皮书,标志AI开发从提示词工程迈入上下文工程时代。白皮书指出,大模型的无状态特性需通过Session管理即时对话和Memory构建长期记忆来解决,使AI具备连贯对话与跨会话理解能力。核心架构采用"双脑"机制:Session处理短期上下文,Memory存储个性化知识。Google强调,未来AI竞争将聚焦上下文工程的精细度,推动Agent从问答机器向个性化伙伴进化。白皮书还区分了Memory与RA
2025-12-15 21:07:43
592
原创 【干货收藏】告别Agent“失忆“:生产级Agentic AI系统的九大黄金法则
构建生产级Agentic AI系统需要系统化的软件工程实践,而非简单提示词工程。文章基于Old Dominion大学研究,提出九大黄金法则:工具调用优于MCP、直接函数优于Agent工具、单一职责原则、外部化Prompt管理、多模型联盟等。通过播客生成系统案例展示如何将理论转化为工程实践,显著提升系统可靠性、可观测性和可维护性,解决Agent"失忆"、出错等问题。
2025-12-15 21:07:01
606
原创 [收藏必看] 从0到1实战:用LlamaIndex微调Embedding模型,RAG系统检索准确率提升14.6%!
本文介绍了利用LlamaIndex微调Embedding模型提升RAG系统检索效果的方法。通过自动生成训练数据集、模型微调和效果评估三个步骤,实现了无需人工标注的端到端微调流程。实验结果表明,微调后的模型在专业领域检索命中率从8.9%提升至23.5%,显著提高了14.6个百分点。文章提供了完整的代码实现,包括数据集生成、模型训练和评估流程,帮助开发者快速构建针对特定业务场景的定制化Embedding模型,有效解决通用模型在专业领域表现不佳的问题。
2025-12-15 21:05:59
574
原创 【必收藏】AI智能体上下文工程全解析:从RAG到多智能体系统的技术演进与未来趋势
摘要 本文系统分析了AI智能体中的上下文工程技术,探讨其从提示工程到上下文工程的演进历程。研究指出,早期提示工程在单轮交互中的局限性促使了上下文工程的出现,后者通过动态管理多源信息(包括系统指令、工具描述、外部数据和对话历史)来弥补大语言模型在感知、记忆和注意力方面的固有缺陷。文章详细梳理了上下文工程的关键技术,如RAG系统、动态上下文管理和记忆架构等,并展望了多模态融合和自动化优化等未来趋势。上下文工程通过构建持续演化的信息环境,使通用大模型转变为特定领域的可靠专家,成为实现复杂AI智能体的核心技术支撑。
2025-12-15 21:05:04
781
原创 收藏!2025大模型人才洗牌真相:28%离职率下,小白/程序员该咋突围?
28%的离职率不是AI行业不行了,而是行业在“去虚向实”。2026年以后,AI薪资会从“虚高”回归“合理溢价”——除了顶尖的预训练、底层架构岗,大部分应用层AI岗位薪资会和高级软件工程师持平,但这不是坏事,因为薪资终于和能力、价值挂钩了。更重要的是,AI能力会成为技术岗位的“标配”,就像现在人人会用数据库一样。对小白来说,这是“弯道超车”的机会——不用和资深程序员拼工龄,只要把AI能力和基础技术结合好,就能快速突围;对程序员来说,这是“升级迭代”的契机,用AI优化工作流程、提升业务价值,就能站稳脚跟。
2025-12-15 14:49:20
718
原创 必藏!程序员入门大模型:避开3大误区,4步高效通关
程序员自带的编程能力、逻辑思维和工程化思维,本就是学习大模型的天然优势。别被“技术门槛”吓倒,也别陷入“盲目跟风”的陷阱,按“夯实基础→突破核心→实战落地”的路径稳步推进,3-6个月就能形成专属的大模型技能优势。大模型不是“颠覆程序员”的洪水猛兽,而是“赋能程序员”的强大工具。
2025-12-15 14:48:00
445
原创 大语言模型核心技术精讲:预训练、微调、提示学习与知识增强,建议收藏学习
本文系统介绍大语言模型关键技术,包括高效预训练策略(优化任务设计、热启动机制等)、适配微调技术(指令微调和参数高效学习如LoRA、Adapter等)、提示学习方法(少样本、零样本提示和思维链)以及知识增强技术(知识增广、支撑、约束和迁移),构成大模型从预训练到应用落地的完整技术体系。
2025-12-15 14:44:37
553
原创 收藏!Java开发者别慌:大模型转型,你的技术才是金饭碗
上周末组了个Java老友局,刚端起酒杯,话题就被“大模型要不要转”给扎住了。坐我旁边的老周,当年带着我们扛过三次双十一大促的服务雪崩,此刻却皱着眉刷着手机:“你看我朋友圈,要么是Python学习打卡,要么是说Java要被淘汰的焦虑文,昨天凌晨三点我还在查‘35岁Java开发转AI来得及吗’”。这场景估计不少后端同行都眼熟。我们早就习惯了和Redis缓存穿透死磕到天亮,把Spring Cloud的熔断阈值调得比自己的血压还精准,写接口、配数据源、做分库分表,这些琐碎活儿虽然累,但手里的技术栈就是底气。
2025-12-14 10:15:00
1133
原创 收藏!AI记忆系统三阶段演进:从工具到伙伴的核心逻辑(小白也能懂)
本文带你吃透AI记忆系统的进化脉络:从朴素RAG只能“查资料”的“只读”模式,到Agentic RAG会“做判断”的“工具化”检索,再到Agent Memory能“记经验”的“读写”时代。这不仅是技术迭代,更是AI从被动工具转向主动学习伙伴的关键跨越。文末附实战要点,不管是刚入门大模型的小白,还是想拓展技术栈的程序员,都能找到核心价值。
2025-12-14 09:45:00
1529
原创 收藏!让大模型更高效:LLM提示词优化的4个实用技巧
本文介绍了四种提升大语言模型性能的实用技巧:1)利用缓存token机制,将静态内容置于提示开头以降低成本;2)将用户问题放在提示末尾可提升30%响应质量;3)使用专业提示优化工具改进提示结构;4)建立定制化基准测试选择最佳模型。这些方法简单易行,能显著优化成本、延迟和输出质量,适合快速应用于实际项目。
2025-12-12 19:12:24
919
原创 成为AI工程师的完整路线图(收藏版):从初级到高级的技能提升指南
本文详细介绍了从程序员转型为AI工程师的学习路线图,分为初级(1个月)、中级(2个月)和高级(3个月)三个阶段。初级阶段需掌握LLM基础、提示工程和基本应用开发;中级阶段重点学习RAG、向量数据库和代理开发;高级阶段涉及LLMOps、模型微调和多模态应用。文章强调通过实际项目提升技能,并提供了丰富的学习资源。建议具备Python编程基础和项目经验的开发者参考该路线图,逐步掌握AI工程的核心技能,以适应AI时代的技术需求。
2025-12-12 19:11:37
857
原创 收藏!研究代理(Agent)构建全攻略:框架设计与上下文工程实践
研究代理:AI驱动的高效知识引擎 研究代理正成为AI领域最具潜力的应用方向,能够突破人类在信息处理方面的生理限制。本文分享了构建高性能研究代理的核心经验:1)采用前瞻性架构设计,确保框架能兼容未来模型升级;2)重点优化工具调用能力和上下文管理策略;3)通过简化编排逻辑和增强自主性,实现66%的令牌消耗降低,同时保持SOTA性能。生产级代理需平衡自主性与可靠性,采用精简工具集和方向性评估方法。随着模型持续进化,研究代理将成为内容生成、编程等复杂工作流的关键组件。
2025-12-12 19:10:45
1009
原创 【收藏必看】LangChain与Python MCP集成实战:六大核心问题深度解析与解决方案
本文分析了LangChain与Python MCP集成的六大核心挑战:接口抽象冲突、状态管理同步、性能损耗、版本兼容性、调试可观测性和安全管控。针对接口冲突问题,提出开发统一数据转换中间层;针对状态同步问题,建议采用单向数据流设计;性能优化方面推荐全异步架构和二进制协议;版本管理强调抽象解耦和自动化测试。文章指出集成需平衡LangChain的灵活性与MCP的标准化要求,针对不同应用场景采取差异化策略。这些解决方案可显著提升集成后的系统稳定性、性能和可维护性。
2025-12-12 19:09:45
850
原创 收藏备用!AI Agent领域30个核心术语,LangChain/Spring AI学习者必看
对于刚入门大模型开发的小白,或是深耕AI领域的程序员来说,AI Agent的相关概念常常让人眼花缭乱。本文精心梳理了AI Agent生态中30个核心术语,从智能体本身的定义到多智能体协作的机制,从基础的LLM支撑到实用的工具调用逻辑,全覆盖AI Agent的核心知识模块。这些术语不仅是理解AI智能体"思考-决策-行动"完整链路的钥匙,更对实操LangChain、Spring AI、CrewAI等主流智能体框架至关重要。
2025-12-12 15:33:32
507
原创 收藏!大模型推理核心:从Prefill到KVCache,小白也能懂的底层逻辑
Prefill灌全Prompt算首词,Decode靠KVCache续新词。KVCache通过缓存历史计算结果,解决了重复计算的痛点,是大模型高效推理的“幕后功臣”。
2025-12-12 15:32:13
577
原创 【珍藏干货】深入理解LangGraph的Supervisor机制:打造高效协作的多智能体系统
本文探讨了LangGraph框架中的Supervisor机制及其在多智能体系统中的应用。通过微软Magentic-One系统的案例,阐述了"分工明确+中央协调+动态路由"的核心架构思想。文章提供了完整的Python实现代码,包括数据库代理和分析代理的协同工作示例,展示了如何构建可扩展、自适应的多智能体系统。同时指出了Supervisor可能存在的循环决策问题,并总结了该机制在任务调度、系统扩展和智能决策方面的价值,为开发高效协作的多智能体系统提供了实用指导方案。
2025-12-11 18:36:41
847
原创 【独家】工具链(Chained Tool Calls)全解析:大厂面试官最看重的技术点,附完整训练方案
工具链是大模型Agent开发的核心技术,指用户一句话需调用多个工具串联生成回答的过程。模型需掌握"思考→调用→观察→再思考→再调用→最终回答"的ReAct循环。训练采用阶梯式教学:先单工具,再两步链式调用,最后多轮多工具链。关键在于工具返回结果需在下一轮传递,参数必须被模型读取。同时需加入错误场景训练,如参数缺失、工具失败等。掌握工具链不仅能解决工程问题,更是大厂面试中判断候选人是否真做过项目的关键指标。
2025-12-11 18:35:55
874
原创 收藏!AI Agent生产环境稳定输出全攻略:RAG优化、工具标准化与组织变革
AI Agent生产化落地的挑战与优化路径 本文探讨了AI Agent从测试到生产环境落地面临的主要问题,包括模型幻觉、召回率低和输出不稳定等。提出了三大优化方向:1)RAG技术优化,确保检索环节的稳定性;2)通过定制Agent Tools实现标准化输入输出,提高结果可控性;3)组织流程变革,优化团队配置与职责分工。文章强调AI Agent是降低人类思考成本的工具,其稳定落地需要技术和组织流程的双重优化。随着AI技术发展,Prompt工程师等新兴岗位将迎来发展机遇。
2025-12-11 18:35:05
689
原创 【收藏】RAG问答质量提升策略:小块召回,大块生成的原理与实现
"小块召回,大块生成"是优化RAG系统的有效策略:通过总结或提取关键信息生成小文档块进行向量化检索,提升召回准确率;在生成阶段则使用原始完整文档,确保上下文连贯性。这种方法既解决了文档噪音导致的召回质量问题,又保持了生成内容的完整性,是提升RAG系统性能的重要技术路径。
2025-12-11 18:33:38
912
原创 【建议收藏】普通程序员的AI进阶之路:大模型应用开发完全指南
本文阐述AI时代程序员依然有广阔发展空间,重点介绍了普通程序员如何学习大模型应用开发。内容涵盖大模型基础知识、提示工程、OpenAI API与LangChain框架应用、RAG与Agent技术实现,以及开源模型选择与微调等核心技能。通过系统学习这些知识,程序员能够将大模型能力融入现有项目开发,抓住AI时代机遇。
2025-12-11 14:21:58
498
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅