- 博客(1813)
- 收藏
- 关注
原创 盘点50个AI大模型企业和典型产品
ChatGPT:是OpenAI推出的非常具有影响力的聊天机器人程序,能够进行自然流畅的对话、文本创作、问题解答等,不断迭代升级,引发了全球对大模型的广泛关注。- GPT-4O:OpenAI的新一代AI模型,在语言理解和生成能力上有进一步提升,能够感知用户的情绪,并针对问题以带有情绪的“嗓音”做出反馈。- Sora:文生视频大模型,可根据文本指令生成复杂且具有一定时长的视频,具有多个镜头、准确的角色和视觉风格保留等特点,但仍在开发完善中。
2024-10-10 16:54:30
4001
原创 9款GPU横评,哪些适合大模型训练,哪些适合推理任务?
在 AI 领域,有两大场景对 GPU 的需求最大,一个是模型训练,另一个是 AI 推理任务。但是很多人多可能在最开始为自己的项目做 GPU 选型时,都很难判断哪些 GPU 适合做模型训练,哪些 GPU 更适合去做推理任务。所以我们通过这篇文章将基于 GPU 指标来帮助大家对比分析NVIDIA 的 H100、A100、A6000、A4000、V100、P6000、RTX 4000、L40s、L4 九款GPU,哪些更推荐用于模型训练,哪些则更推荐用于推理。
2024-09-24 15:10:47
12046
原创 大模型学习路线(超全面!超详细!)收藏这一篇就够了!
在深度学习领域,"大模型"通常指的是模型参数数量庞大、拥有深层结构的神经网络。这些模型的规模通常表现为网络中的参数数量,即模型中需要学习的权重和偏置的数量。具体来说,大模型可能包含数百万到数十亿的参数。
2024-09-23 11:59:31
4451
原创 深度学习必备框架:7步轻松搞定 Pytorch 基础!
接下来我们定义网络结构,由于是图像分类任务,因此我们的节点维度使用逐步降低的定义。nn.Flatten(), # 将维度转换为二维nn.Linear(784, 256), # 全连接层nn.ReLU(), # 激活函数nn.Linear(256, 10) # 全连接层。
2023-01-30 10:02:57
2865
原创 必收藏|人工智能体入门详解(小白/程序员必看):不是聊天机器人,是未来超级助手
人工智能体是一类具备主动感知环境、拆解复杂任务、自主调用工具,最终达成预设目标的自主智能系统,和我们日常接触的传统聊天机器人有着本质区别,并非“更聪明的对话工具”。其核心技术涵盖任务解析规划、工具调用引擎、记忆存储系统及反馈优化闭环,目前已深度渗透到企业办公、金融风控、工业制造等多个主流领域,成为提升工作效率、简化复杂流程的核心助力。
2026-02-04 14:26:22
88
原创 收藏级AI Agent漫游指南|小白&程序员必看,建立完整大模型科技史观
在业界一度有一个乱象,就是把所有基于大模型的聊天机器人都统称为智能体即AI Agent。不管你是一个角色扮演的应用,或者通过流程编排出来的一个大模型工作流,还是可以自主决策来去使用工具做任务的真Agent,这些都统称为AI agent,但这其实是一个误区和懒惰。现在都说2025年是AI Agent的元年,我们很有必要去澄清一下AI Agent它到底是什么。AI agent是基于大模型,具备记忆能力、能够有自主推理和规划工具的使用,从而来解决问题的智能程序。
2026-02-04 14:25:46
71
原创 必收藏|马斯克预言成真?转行AI大模型训练师,小白&程序员都能抓住的风口
当下,人工智能的迭代速度早已超出大众预期,而马斯克关于AI智力发展的大胆预测,更是让每一位职场人、技术从业者,清晰感受到这场技术革命的紧迫感与机遇感——尤其是对于想切入AI赛道的小白和程序员而言,这或许就是最值得把握的转型窗口。在2025年9月9日举办的All-In峰会上,马斯克再次重申了他的AI智力预测,观点明确且极具冲击力:2026年,人工智能的智力水平将正式超越单个人类;到2030年,AI智力更是会实现跨越式突破,超越全人类智力的总和。
2026-02-04 14:24:17
91
原创 收藏必备!AI重塑数据治理:百分点科技垂直大模型技术解析与实战应用
百分点科技发布业内首个数据治理垂直大模型"百思",通过"知识+推理"双轮驱动架构,解决传统数据治理依赖人工、缺乏行业适配、合规难度大和治理闭环缺失等问题。该模型提供专家级知识问答、全流程治理规划、资产自动生成和成效评估四大功能,与AI-DG平台形成"决策+执行"双引擎,实现从"工具辅助"到"智能驱动"的转变,为数据治理提供安全可控的技术路径。AI与大模型技术席卷千行百业,高质量数据已成为驱动产业升级的“新石油”。
2026-02-04 14:23:30
182
原创 收藏!Agent+MCP+Skills:AI从“能聊“到“能干“的跃迁之路
AI系统演进三大核心:Agent协调者角色转变、MCP标准化通信协议、Skills模块化能力单元。三者协同构建动态智能网络,推动AI从单一模型向多智能体协作范式转型,实现从对话能力到执行能力的跨越。MCP作为模型间"通用语"确保上下文无损传递,Skills提供即插即用的专业化能力,Agent则扮演任务调度中枢。这种架构突破标志着AI应用进入"可行动、可协作、可扩展"的新阶段,为构建复杂工作流和生态化发展奠定基础。
2026-02-03 18:20:38
436
原创 收藏!为什么你的AI效率低?因为你没分清这三种AI助手(RAG/Skill/Agent)
文章指出许多人使用AI效率低下的根本原因在于混淆了RAG(资料检索)、Skill(标准化流程)和Agent(自主执行)三种AI工具类型。正确做法是根据任务性质选择合适工具:资料查询用RAG,重复性工作用Skill,复杂项目用Agent。文章强调AI应用的关键在于合理分工而非追求"最强AI",并提供了简明判断方法帮助用户高效选择工具类型。最后提到大模型技术发展带来的新职业机会,强调持续学习AI技能的重要性。
2026-02-03 18:19:43
633
原创 【AI必备】Prompt、Rules、Skills、MCP区别详解!一文搞懂AI四大核心概念,建议收藏!
本文解析AI应用中的四个核心概念:Prompt是与AI对话的基础输入;Rules是设定AI长期行为准则;Skills是封装完整任务解决方案的可复用模板;MCP是连接AI与外部世界的安全协议。文章通过餐厅菜单的比喻帮助理解这些概念,针对不同使用场景给出建议,帮助用户从"偶尔问AI"进化到"将AI作为真正的数字助手",提升工作效率。
2026-02-03 18:18:30
233
原创 AI产品经理破局之道:5大提问框架,让业务经验变AI燃料,建议收藏
AI产品经理的核心困境在于业务隐性知识与AI显性规则间的鸿沟。突破之道在于角色转型:从被动接需求到主动挖掘业务痛点,从推销方案到精准定义问题,从交付功能到输出认知共识。关键在于掌握"提问工程"能力,通过标准化框架将业务经验转化为可落地的AI规则,并采用原型验证实现闭环。最终目标是成为业务共同设计者,创造"AI增强业务"而非简单替代的深层价值。这一转型需要从会议室走向一线,通过现场观察和结构化提问,将直觉判断转化为可执行的决策逻辑。
2026-02-03 18:16:29
712
原创 AI Agent必备干货:MCP与Skill的终极对比,彻底讲清楚,建议收藏!
本文解析AI Agent工具中MCP与Skill的核心区别。MCP作为标准化连接协议,使AI能访问外部系统(如数据库、API),解决"能做什么"的问题;Skill作为知识库,指导AI处理特定任务的方法论,解决"怎么做"的问题。两者分别在集成层和知识层发挥作用:MCP通过JSON-RPC实现工具调用,Skill通过结构化指令提升任务处理能力。实际应用中需结合两者,如MCP连接数据源后,Skill指导数据分析。MCP适合动态扩展能力,Skill适合优化流程,采用渐进式加载
2026-02-03 18:15:42
614
原创 知识图谱的智能跃迁:大模型环境下的架构革命
本文提出上下文图谱概念,通过四元组或n元组结构融入时效性、来源和决策逻辑等元数据,解决传统知识图谱的局限性。结合CGR3(检索-排名-推理)范式,利用大语言模型提升知识图谱补全和问答任务性能。实验显示,在FB15k-237和YAGO3-10数据集上,Hits@1提升高达66.46%,为企业AI应用提供更可靠的推理基础,推动从静态数据到动态智能决策的转变。
2026-02-03 18:14:48
682
原创 Java程序员必学的Agent开发:一篇掌握大模型智能体核心概念,建议收藏
Agent(智能体) 是一个能感知环境、做出决策、执行动作的自主程序。你可以把它想象成一个“数字员工”——它能理解你的指令,调用工具完成任务,甚至和其他 Agent 协作。🧠 类比:就像你写了一个 Worker 类,它有 think()、act() 和 remember() 方法,能自动完成一系列复杂任务。用 接口和实现 定义工具(Tool)用 策略模式 切换不同模型或记忆策略用 状态机 管理 ReAct 流程。
2026-02-03 14:17:33
546
原创 必收藏!未来5年程序员最优发展方向,认准AI大模型准没错
对于小白来说,不用害怕零基础,从大模型基础应用入手,逐步深耕核心技术,就能快速跟上节奏;对于资深程序员来说,跨界掌握大模型相关技能,就能打破职业瓶颈,实现薪资翻倍。
2026-02-03 14:15:23
769
原创 收藏备用|AI浪潮下,传统程序员转型AI工程师全指南(小白也能看懂)
本文聚焦AI爆发期科技行业的就业现状,拆解传统程序员向AI工程师转型的完整路径,全程干货无废话,核心涵盖两大核心板块,小白可直接对标参考:一是就业市场深度解析:当前科技行业“冷热不均”态势愈发明显,无经验、无核心技能的从业者求职难上加难,而AI相关领域(模型训练、AI应用开发、模型部署等)人才缺口极大,薪资持续走高,头部科技公司与AI原生企业纷纷加大资源倾斜,成为行业新风口;
2026-02-03 14:14:10
507
原创 【建议收藏】LLM数据准备指南:从传统方法到智能自动化的变革之路
这项综述系统梳理了LLM增强数据准备领域的最新进展,涵盖了数据清洗、数据集成和数据丰富化三大核心任务。研究分析了LLM如何通过指令驱动自动化、语义感知推理、跨域泛化和知识增强处理等能力重塑传统数据准备工作流。通过统一的分类法,研究组织典型方法,提炼其设计原则,并讨论了现有LLM增强方法的局限性。研究还总结了代表性数据集和指标,以促进这些方法的全面评估,并识别了开放挑战,概述了未来研究方向。随着数据量的持续增长和数据复杂性的不断提高,LLM增强的数据准备方法有望成为下一代数据管理系统的核心组件。
2026-02-03 14:11:43
395
原创 一文读懂Anthropic Agent SDK:18+内置工具详解,重塑AI Agent开发流程,开发者必藏!
Anthropic推出的Claude Agent SDK提供18+内置工具,涵盖文件操作、命令执行、搜索、Web功能等核心场景。重点功能包括Task工具的子代理编排能力、TodoWrite任务管理工具,以及WebSearch、Plan Mode等特色工具。该SDK支持安全模型和权限控制,通过MCP生态系统实现AI Agent开发范式转变,使开发者能够构建复杂的AI应用系统。工具体系设计强调透明度和可控性,如AskUserQuestion实现规格驱动开发,Plan Mode分离研究与执行阶段,确保开发过程安全
2026-02-02 19:28:33
818
原创 Java开发者必看!40篇系统教程+完整代码,从入门到精通掌握AI应用开发(建议收藏)
LangChat Team推出Java开发者AI应用开发学习路径,包含40篇教程及配套代码,基于LangChain4j 1.10.0、Java 17和Spring Boot 3.2+技术栈。项目分7个阶段系统教学,覆盖RAG、Agent、多模态等前沿技术,提供企业级实战案例。同时附带2026大模型学习资源包,包含路线图、书籍、视频、项目实战及面试题等,帮助开发者快速掌握AI技术转型高薪岗位。资料由清华-加州理工双料博士领衔研发,适合各层次学习者。
2026-02-02 19:27:39
581
原创 揭秘ACPs/AIP的中心化架构:不是落后而是高效,附智能体跨域协作三种实现方式 | 技术必藏
本文探讨AIP/ACPs体系中智能体跨域协作的三种实现方式:跨域直查、跨域同步和发现转发。通过注册服务器、凭证管理服务器和发现服务器的协同工作,实现"跨域能力发现+身份可信校验+连接协作"。分析显示,跨域直查实时性最佳但安全风险较高,跨域同步提升稳定性但存在数据一致性问题,发现转发则在统一治理与合规性方面表现最优。基于实践经验,文章推荐采用发现转发方式,因其能更好平衡性能与安全需求,符合"自治域互通"的设计理念。
2026-02-02 19:26:36
604
原创 2026年版|大模型企业运营落地全流程(小白/程序员必收藏,从入门到进阶)
对于刚接触大模型、想学习其企业级应用的小白和程序员来说,掌握大模型在企业运营中的落地逻辑至关重要。2026年,大模型技术愈发成熟,企业应用也更趋规范化,通常需要分三个阶段循序渐进推进,每一步都有明确的核心目标和实操重点,新手可直接对照学习、落地实践。
2026-02-02 14:50:27
502
原创 【收藏备用|2026年版】未来10年,什么领域的职业发展潜力最大?
未来10年,什么领域的职业发展潜力最大?今年找工作彷佛进入地狱模式,一边是投出上百份简历却石沉大海,一边是AI人才年薪百万的消息层出不穷。这。。真的活在同一个世界吗?真相是:时代正在重构,职业价值正在重估。
2026-02-02 14:45:26
638
原创 收藏!一文掌握大语言模型原理及其医疗领域应用挑战
大语言模型实际上是一个“大规模生成式预训练语言模型”,其核心目标是通过数学与工程方法探寻人类语言规律,进而实现对文本的理解与生成。这一技术的底层逻辑,源于对人类语言“路径依赖”特性的捕捉——当人们表达时,前文的内容会对后文形成约束(例如“今天天气”后接的内容必然与天气相关),而模型正是通过学习这种约束关系完成对“下一个字符”的预测。传统语言模型基于N元文法构建,受限于训练数据规模与计算能力,仅能基于较短的文本历史(如前2~3个词)预测后续内容,准确率有限。
2026-02-02 14:39:49
718
原创 大模型技术全攻略:从基础到前沿,程序员必学指南,建议收藏!
AI大模型(Large Language Model)是指参数规模通常在百亿级以上、通过海量数据预训练获得的通用人工智能基础模型。
2026-02-02 14:34:01
621
原创 收藏级干货|AI Agent开发全链路拆解(小白&程序员必看,从入门到落地)
在人工智能领域,Agent并非全新概念,但在大模型时代,它被赋予了全新的生命力,成为当下最具潜力的技术方向之一。AI Agent是一个能自主感知环境、理解任务、制定计划、调用工具,最终完成目标的智能实体。它和我们平时接触的聊天机器人有本质区别:聊天机器人只能“你问我答”,被动响应;而AI Agent是“主动干活”,相当于一个“数字员工”,能自主完成一系列复杂操作。从理解需求到落地执行的全闭环能力,也是它区别于普通聊天机器人的关键。小白解读:相当于人对近几天、近几周经历的总结,保留核心要点;
2026-01-31 15:33:38
962
原创 收藏级|程序员/小白必看!大模型转行入门全攻略(避坑+方向+就业真相)
不管是程序员想转型,还是小白想入行,最关心的问题永远是:“大模型是行业新风口,是不是竞争小、好就业?能避开35岁职业危机吗?风口是真实存在的,但机会只留给有准备的人;大模型能抗职业危机,但前提是你有核心竞争力。当前企业确实紧缺大模型相关人才,但缺的是“能落地、能解决实际问题”的实战型人才——不是只会背理论原理、啃源码的“理论家”,而是能快速用RAG搭建行业知识库、能把模型压缩部署到边缘设备、能独立完成AIGC应用落地、能解决实际业务问题的实践者。
2026-01-31 15:32:38
750
原创 必收藏!2026 AI应用爆发详解(小白/程序员必看,五大核心板块快速上手)
近期,AI应用正式接棒AI硬件,成为AI赛道最具爆发力的支线板块,甚至与商业航天并肩,跻身两大绝对主线题材,成为科技圈和创投圈的焦点。对于小白和程序员来说,这波AI应用爆发不是“看热闹”,而是实实在在的学习风口、就业机遇——毕竟,现在入局就能紧跟行业红利,掌握核心板块逻辑,后续无论是求职、副业还是技术深耕,都能抢占先机。AI应用为啥突然爆发?未来发展空间有多大?程序员该重点关注哪些核心板块?
2026-01-30 15:54:53
893
原创 【收藏必备】半小时从零搭建GUI Agent:通用大模型赋能的自动化操作实战指南
什么是GUI Agent?简单来说,就是一个能够"看懂"屏幕(mobile/pc/web)并进行自动操作的AI Agent。比如用户发送指令“整理文件”,PC GUI Agent就可以基于纯GUI界面理解页面内容,进行逐步决策&操作,直到完成用户任务。随着GUI Agent的应用前景逐渐明朗,GUI Agent在25年的发展很迅猛,其中一个比较明显的新趋势是,通用大模型也在训练GUI上的能力:因此,搭建一个好用的GUI Agent变得越来越简单。
2026-01-30 14:34:47
936
原创 收藏必备:RAG应用问答对构建实战:从文档到客服机器人的高效路径
文章探讨RAG知识库冷启动阶段问答对的构建方法,针对用户提问与文档内容的结构差异,提出从网页、文档、图片等资料中抽取FAQ并补充相似问法的解决方案。详细介绍了文档分段策略(语义/结构化/混合分段)、提示词设计技巧、人工复核流程等关键环节,以及图片处理的OCR+文本模型与多模态模型两条技术路线。强调以用户问题为中心,通过平衡自动化效率与人工质量把控,实现知识库快速落地和持续优化,特别适合客服等高频确定性问题场景。
2026-01-29 19:08:38
919
原创 【深度好文】多模态嵌入模型两种实现方式详解:解决多模态RAG落地难题,值得收藏
多模态嵌入模型是实现跨模态数据检索的核心技术,通过将不同模态数据映射到统一向量空间实现语义关联。当前主要分为两类实现方式:模态融合同步处理和分模态独立转换再组合。虽然理论上多模态RAG可行,但实际应用受限,主要由于高成本、流程复杂和效果欠佳。目前行业主流仍采用提取多模态文本信息进行语义检索的方式,主要应用于电商领域的文搜图和图搜图场景。该技术仍处于发展阶段,需要进一步优化以拓展应用范围。
2026-01-29 19:07:54
840
原创 AI大模型就业风口:5大高薪岗位全解析,年轻人必看,建议收藏
AI大模型时代催生5大高薪岗位:算法工程师、数据科学家、AI产品经理、自动驾驶工程师和AI伦理学家,起薪最高达40万。8大应用方向涵盖文本处理、代码生成、教育辅导等领域,推动职业向高价值转型。2024年AI产业规模超7000亿,人才缺口500万,建议年轻人掌握大模型技术以把握跨界机遇。
2026-01-29 19:04:31
774
原创 收藏!AI悄然颠覆流程工业,工程师不进化将被淘汰?万华化学的工业AI实践给你答案
流程工业正经历AI驱动的隐形变革,工程师面临能力升级挑战。本文揭示:1)工业AI应用已从政策导向转为行业实践,万华化学等企业通过专业模型TPT实现效率提升;2)通用AI存在工业适配难题,专业工业AI需具备数据驱动、可解释性等特性;3)AI不是替代而是增强工程师能力,人机协同将重塑工作模式。文章指出,拒绝AI进化的工程师将被淘汰,呼吁从业者主动拥抱变革,从操作执行转向系统决策。
2026-01-29 19:03:02
700
原创 收藏!月薪5k和50k的工程师差距在哪?AI大模型TPT揭秘工业决策新范式
工厂工程师薪资差距达10倍,根源在于认知维度差异:高薪者能预判系统风险,低薪者仅解决已发生问题。国家《"人工智能+制造"专项行动意见》推动经验系统化转型,中控技术TPT工业大模型作为能力倍增器,通过三大核心功能助力工程师认知跃迁:1)自动分析全装置数据,提升信息处理效率;2)基于工业机理确保决策透明可追溯;3)支持自然语言交互生成可执行方案。该技术已在万华化学等头部企业应用,异常预测准确率达99.79%,重塑工业决策范式。
2026-01-29 19:02:09
640
原创 【收藏】AI职场生存指南:3个核心能力让你在AI浪潮中逆势而上,越用AI越值钱!
摘要:AI时代职场面临深刻变革,个人需调整策略应对挑战。核心建议包括:1)将AI作为工具,专注培养创造力、共情力等不可替代能力;2)从积累人脉转向建立个人信用,通过可靠表现积累口碑;3)采取错维竞争策略,在行业低谷时开辟新赛道。真正的职场稳定源于持续进化能力,而非依赖特定岗位。面对不确定性,培养"反脆弱"心态至关重要。本文还提供了大模型技术学习资源,帮助读者掌握AI时代核心技能。(149字)
2026-01-29 19:01:08
736
原创 必收藏!行业大模型核心解析(小白&程序员入门必备)
规模定律驱动通用大模型性能不断提升,同时也产生了“不可能三角”问题:专业性、泛化性和经济性三方面很难兼得。第一,专业性指大模型处理特定领域问题或任务的准确性与效率。专业性要求越高,越需要针对特定领域数据进行训练,可能造成模型过拟合而降低泛化能力。此外,增加的数据收集和训练也会增加成本、降低经济性。第二,泛化性指大模型处理训练数据集之外新样本的表现能力。
2026-01-29 15:29:06
464
原创 收藏!2025秋招真相:IT仍是王者,AI算法岗年薪40万领跑全场
秋招战场的冰火两重天,今年格外刺眼。一边是无数毕业生为“月薪过万”辗转焦虑,投出的简历石沉大海;另一边,不少瞄准热门赛道的毕业生,早已将“年薪40万”纳入囊中之物,成为秋招里的“天选赢家”。每年秋招都是就业市场的“晴雨表”,行业冷热、岗位薪资、企业需求,都能从中找到答案。对于想深耕IT、入门大模型的小伙伴而言,无需在海量信息中迷茫,下面三组关键数据,帮你看清2025年求职核心趋势,少走弯路!
2026-01-29 15:25:13
606
原创 大模型学习必备(收藏版)| 从基础到实践,小白&程序员入门必看
答案:Token是大模型处理文本的基本单位可以是单词、子词(subword)或字符不同模型使用不同的分词器(Tokenizer)1、使用模型对应的Tokenizer估算方法英文:大约1个Token = 0.75个单词中文:大约1个Token = 1-2个汉字使用tiktoken库(OpenAI)进行精确计算影响因素语言类型(中文通常比英文Token数多)文本复杂度特殊字符和标点控制输入长度不超过模型上下文窗口估算API调用成本(按Token计费)优化批处理大小。
2026-01-29 15:22:55
629
原创 程序员必看:RAG检索增强生成技术详解与应用实践(收藏版)
RAG) 是一种无需微调即可扩充模型知识的常用方法。借助 RAG,LLM可以从数据库中检索上下文文档,以提高答案的准确性。因为 LLM 大模型通过海量数据进行训练,数据是有时效性的。如果询问最新的文档或者一些专业领域的知识,LLM 是无法回答的。所以检索增强生成(RAG) 通过将你的数据添加到 LLM 已有的数据中来解决此问题。RAG 解决了纯生成模型的局限性(如幻觉、知识过时等),通过动态检索外部知识增强生成结果的可信度和时效性。
2026-01-29 15:15:04
513
原创 收藏必备!多模态RAG系统实现详解:从文档解析到生成全流程
多模态RAG在传统RAG基础上增加了对图像、视频等多模态数据的处理能力,其实现流程包括文档解析(提取不同模态数据并保留结构关联)、入库与检索(内容提取或多模态嵌入模型)以及生成(构建多模态上下文)。实操远比理论复杂,需解决文档解析、多模态融合嵌入和上下文构建等核心问题,以适应复杂业务场景需求。多模态RAG是一项非常复杂的系统,需要分布解决,文档解析,嵌入多模态融合,上下文构建等。RAG技术虽然还存在很多问题,但基本上已经可以应用于真实的业务场景,并且用来解决部分实际问题;
2026-01-28 19:18:09
346
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅