【算法】二分查找

一、算法描述

需求:在有序数组 A 内,查找值 target;如果找到返回索引,如果找不到返回 -1

1.描述

给定一个含 n 个元素的有序数组 A,满足 A0 ≤ A1 ≤ A2 ≤···≤ An-1,一个待查值 target。

2.解题思路

因为数组是有序的,所以用区间减半来提高查找效率,左区间起点i,右区间起点j,一开始是全部元素,每次拿中间的元素来和目标元素比较,如果相等则返回;
如果目标元素小于中间元素,则说明目标元素在左区间,直接把区间范围缩减到左区间。
如果目标元素大于中间元素,则说明目标元素在右区间,直接把区间范围缩减到右区间。
一直重复,直到找到目标元素。

3.解题步骤
  • 1.设置 i= 0, j=n-1
  • 2.如果 i > j,结束查找,没找到
  • 3.设置 m = floor((i+j)/2),m 为中间索引,floor 是向下取整( ≤(i+j)/2的最小整数)
  • 4.如果 target < Am , 设置 j = m - 1,跳到第2步
  • 5.如果 target > Am , 设置 i = m + 1,跳到第2步
  • 6.如果 target = Am ,找到了,结束查找。

二、使用左闭右闭

    /**
     * 二分查找基础版
     * @param arr
     * @param target
     * @return
     */
    public static int binarySearchBasic(int[] arr,int target) {
        int i = 0;
        int j = arr.length - 1;

        while (i <= j) {
            int mid = (i + j) / 2;
            if (target < arr[mid]) {
                // 去到左区间查找
                j = mid - 1;
            } else if (target > arr[mid]) {
                // 去到右区间查找
                i = mid + 1;
            } else {
                return mid;
            }
        }
        return -1;
    }

判断的时候使用的是i <= j,如果没有等于的话,那么参与比较的只有i和j中间的元素,i和j本身就没有参与比较,如果目标就是i和j,则会返回-1。

三、越界问题

当数组的数量达到了整数最大值个数的时候,使用(i+j)/2 运算,当要查找的目标在右区间时,运算的过程中i+j超过了整数的最大值,那么结果会变成负数。
在Java中,数字的表示都是带符号位的,虽然i+j已经超过了整数最大的表示范围,但(i+j)/2并没有超过,所以可以把除以2替换为右移运算,虽然i+j是负数,但是实际他对应的二进制数是没有问题的,只是在Java中,是带符号位的,所以就表现了负数,在使用右移替换了除法之后,得到的数就没有超过最大值了,就可以准确的转换为正确的数字了。
优化代码:

    /**
     * 二分查找基础版
     * @param arr
     * @param target
     * @return
     */
    public static int binarySearchBasic(int[] arr,int target) {
        int i = 0;
        int j = arr.length - 1;

        while (i <= j) {
            int mid = (i + j) >>> 1;
            if (target < arr[mid]) {
                // 去到左区间查找
                j = mid - 1;
            } else if (target > arr[mid]) {
                // 去到右区间查找
                i = mid + 1;
            } else {
                return mid;
            }
        }
        return -1;
    }

四、使用左闭右开

让j只作为边界,而不作为查找目标。

    /**
     * 二分查找基础版 左闭右开
     * @param arr
     * @param target
     * @return
     */
    public static int binarySearch(int[] arr,int target) {
        int i = 0;
        int j = arr.length; // 第一处不同

        while (i < j) {    // 第二处不同
            int mid = (i + j) >>> 1;
            if (target < arr[mid]) {
                // 去到左区间查找
                j = mid;   // 第三处不同
            } else if (target > arr[mid]) {
                // 去到右区间查找
                i = mid + 1;
            } else {
                return mid;
            }
        }
        return -1;
    }

注意:这里的判断,一定要使用<,不能是<=,因为j不作为比较的元素了,只作为边界,否则会在没有元素的情况下进入死循环。

五、平衡二分查找

在上面的写法中:
如果要查找的元素在最左边,那么判断中,只需要执行if判断,不需要执行else if判断,一共执行的次数是n次;
如果要查找的元素在最右边,那么判断中,if判断执行了,但是没满足,else if判断也执行,满足,所以一共执行的次数是2n次。
所以查找并不平衡。

优化思路:把多执行的else if判断抽出去,让每次操作都只执行一次判断,那么比较次数就不存在不平衡的情况了。

/**
     * 平衡二分查找
     * @param arr
     * @param target
     * @return
     */
    public static int balanceBinarySearch(int[] arr, int target) {
        int i = 0;
        int j = arr.length;

        while (j - i > 1) {
            //当i和j中间还有元素的时候就继续
            int mid = (i + j) >>> 1;
            if (target < arr[mid]) {
                j = mid;
            } else {
                i = mid;
            }
        }
        if (arr[i] == target) {
            return i;
        } else {
            return -1;
        }
    }

1.左闭右开的区间,i 指向的可能是目标,而 j 指向的不是目标
2.不在循环内找出目标对象,而是等范围内只剩i时,退出循环,在循环外比较 a[i] 与 target
3.循环内的平均比较次数减少了
4.时间复杂度 θ ( l o g ( n ) ) θ(log(n)) θ(log(n))

缺点:无论什么情况,都要遍历完直到只剩下最终的元素,才会退出循环拿到结果。时间复杂度最好和最快都是 θ ( l o g ( n ) ) θ(log(n)) θ(log(n))

六、使用递归实现

    /**
     * 二分查找
     * @param nums
     * @param target
     * @return
     */
    public int binarySearch(int[] nums, int target) {
        return binarySearchRecursion(nums,target,0,nums.length-1);
    }

    /**
     * 递归查找
     * @param arr
     * @param target
     * @param startIndex
     * @param endIndex
     * @return
     */
    public static int binarySearchRecursion(int[] arr, int target, int startIndex, int endIndex) {
        int mid = (startIndex + endIndex) >>> 1;
        if (startIndex > endIndex) {
            return -1;
        }
        if (target == arr[mid]) {
            return mid;
        }
        if (target < arr[mid]) {
            //左侧找
            endIndex = mid - 1;
        } else {
            //右侧找
            startIndex = mid + 1;
        }
        return binarySearchRecursion(arr, target, startIndex, endIndex);
    }

七、二分查找在Java中的实现

Arrays.binarySearch(int[] a, int key)

    /**
     * Searches the specified array of ints for the specified value using the
     * binary search algorithm.  The array must be sorted (as
     * by the {@link #sort(int[])} method) prior to making this call.  If it
     * is not sorted, the results are undefined.  If the array contains
     * multiple elements with the specified value, there is no guarantee which
     * one will be found.
     *
     * @param a the array to be searched
     * @param key the value to be searched for
     * @return index of the search key, if it is contained in the array;
     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
     *         <i>insertion point</i> is defined as the point at which the
     *         key would be inserted into the array: the index of the first
     *         element greater than the key, or <tt>a.length</tt> if all
     *         elements in the array are less than the specified key.  Note
     *         that this guarantees that the return value will be &gt;= 0 if
     *         and only if the key is found.
     */
    public static int binarySearch(int[] a, int key) {
        return binarySearch0(a, 0, a.length, key);
    }

    // Like public version, but without range checks.
    private static int binarySearch0(int[] a, int fromIndex, int toIndex,
                                     int key) {
        int low = fromIndex;
        int high = toIndex - 1;

        while (low <= high) {
            int mid = (low + high) >>> 1;
            int midVal = a[mid];

            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1);  // key not found.
    }

八、二分查找对重复元素的处理

查找目标元素,如果有相同的元素,返回最左侧/最右侧的元素

    /**
     * 二分查找,返回最左侧的目标元素
     * @return
     */
    public static int binarySearchLeftMost(int[] arr, int target) {
        int i = 0;
        int j = arr.length - 1;
        int candidate = -1 ;
        while (i <= j) {
            int mid = (i + j) >>> 1;
            if (target < arr[mid]) {
                // 去到左区间查找
                j = mid - 1;
            } else if (target > arr[mid]) {
                // 去到右区间查找
                i = mid + 1;
            } else {
                //相等了不立刻返回,而是找到最左侧的,再返回
                candidate = mid;
                //继续向左查找,看看是否还有相同的
                j = mid - 1;
            }
        }
        return candidate;
    }

    /**
     * 二分查找,返回最右侧的目标元素
     * @return
     */
    public static int binarySearchRightMost(int[] arr, int target) {
        int i = 0;
        int j = arr.length - 1;
        int candidate = -1 ;
        while (i <= j) {
            int mid = (i + j) >>> 1;
            if (target < arr[mid]) {
                // 去到左区间查找
                j = mid - 1;
            } else if (target > arr[mid]) {
                // 去到右区间查找
                i = mid + 1;
            } else {
                //相等了不立刻返回,而是找到最右侧的,再返回
                candidate = mid;
                //继续向左查找,看看是否还有相同的
                i = mid + 1;
            }
        }
        return candidate;
    }

优化-1返回值:让找不到的时候,返回一个接近的元素下标,而不是-1

    /**
     * 优化最左查找返回值
     * @param arr
     * @param target
     * @return 返回大于等于目标的最靠左的索引
     */
    public static int binarySearchLeftMost1(int[] arr, int target) {
        int i = 0;
        int j = arr.length - 1;
        while (i <= j) {
            int mid = (i + j) >>> 1;
            if (target <= arr[mid]) {
                // 去到左区间查找
                j = mid - 1;
            } else {
                // 去到右区间查找
                i = mid + 1;
            }
        }
        return i;
    }


    /**
     * 优化最右查找返回值
     * @param arr
     * @param target
     * @return 小于等于目标的最靠右的索引
     */
    public static int binarySearchRightMost1(int[] arr, int target) {
        int i = 0;
        int j = arr.length - 1;
        while (i <= j) {
            int mid = (i + j) >>> 1;
            if (target < arr[mid]) {
                // 去到左区间查找
                j = mid - 1;
            } else {
                // 去到右区间查找
                i = mid + 1;
            }
        }
        return i - 1;
    }

九、Leetcode相关题目:

1.Leetcode704.二分查找

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1

示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
class Solution {
    public int search(int[] nums, int target) {
        int i = 0;
        int j = nums.length -1 ;
        while(i<=j){
            int mid = (i+j) >>> 1;
            if(target < nums[mid]){
                j = mid -1;
            }else if(target > nums[mid]){
                i = mid +1;
            }else{
                return mid;
            }
        }
        return -1;
    }
}
2.Leetcode35. 搜索插入位置

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。

示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
class Solution {
    public int searchInsert(int[] nums, int target) {
        int i = 0;
        int j = nums.length-1;
        while(i<=j){
            int mid = (i+j) >>> 1;
            if(target<=nums[mid]){
                j = mid -1;
            }else {
                i = mid +1;
            }
        }
        return i;
    }
}
3.Leetcode34. 在排序数组中查找元素的第一个和最后一个位置

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]
你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

class Solution {
    public int[] searchRange(int[] nums, int target) {
        // 查找最左侧元素
        int left = searchMost(nums,target,-1);
        if(left == -1){
            return new int[]{-1,-1};
        }else{
            // 查找最右侧元素
            int right = searchMost(nums,target,1);
            return new int[]{left,right};
        }
    }

    
    public int searchMost(int[] nums,int target,int lr){
        int i = 0;
        int j = nums.length - 1 ;
        int candidate = -1;
        while(i<=j){
            int mid = (i+j) >>> 1;
            if(target < nums[mid]){
                j = mid -1;
            }else if(target > nums[mid]){
                i = mid + 1;
            }else {
                candidate = mid;
                // 最左元素
                if(lr == -1){
                    j = mid - 1;
                }else{
                    //最右元素
                    i = mid + 1;
                }
            }
        }
        return candidate;
    }
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值