对函数依赖的推导的认识

一:Armstrong公理

自反律,增广律,传递律

合并规则,分解规则,伪传递规则

有效性:X->Y能使用Armstrong公理由F推出,那么F|=X->Y。

二:属性集的闭包

为了证明完备性,于是有了属性集的闭包。

由有效性和完备性以及引理可以得到:X->Y是F的闭包,当且仅当Y是X关于F的闭包。

计算X关于F的闭包的算法。

三:函数依赖集的等价和极小覆盖

函数依赖集是等价的有定理可以证明。

Fm中的函数依赖箭头右边是单个属性,左边没有多余属性,Fm中没有多余的函数依赖,并且Fm恒等于F,那么Fm是F的极小覆盖。

极小覆盖的算法。

Fm中的箭头左边的属性如果一样,那么合并右边的属性,得到的Fc就是F的正则覆盖。

以上就是我对于函数依赖的推导的一些认识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值