📚 每日Python小知识 🐍
每天花1分钟,解锁一个Python实用技巧/冷知识!无论是新手还是老手,这里都有让你眼前一亮的编程干货。
✨ 今日主题:functools.lru_cache
💡 自动缓存函数结果,让重复计算成为历史!
from functools import lru_cache
import time
@lru_cache(maxsize=128) # 缓存最近128次调用
def fibonacci(n):
if n < 2:
return n
print(f"计算fib({n})...") # 仅首次计算会打印
return fibonacci(n-1) + fibonacci(n-2)
# 第一次计算(完整递归)
start = time.time()
print(fibonacci(30)) # 输出: 832040
print(f"耗时: {time.time()-start:.4f}秒")
# 第二次计算(直接从缓存读取)
start = time.time()
print(fibonacci(30)) # 瞬间返回结果
print(f"耗时: {time.time()-start:.4f}秒")
✨ 进阶技巧:
-
缓存失效控制:添加
typed=True
区分参数类型(如1和1.0) -
查看缓存状态:
fibonacci.cache_info()
显示命中率 -
清空缓存:
fibonacci.cache_clear()
🚀 适用场景:
-
数学计算(阶乘、斐波那契等)
-
数据转换(如Markdown→HTML)
-
机器学习特征预处理
你学会了吗?