二叉树
在计算机中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作"左子树"(left subtree)和"右子树"(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。
类型
- 完全二叉树——若设二叉树的高度为h,除第h层外,其它各层(1~h-1)的节点数都达到最大个数,第h层有叶子节点,并且叶子结点都是从左到右依次排序,这就是完全二叉树。
- 满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。
- 平衡二叉树——平衡二叉树又被称为AVL树(区别AVL算法),它是一颗二叉排序树,且具有以下性质:它是一颗空树或它的左右两个子树的高度差绝对值 不超过1,并且左右两个子树都是一颗平衡二叉树。
二叉树遍历
遍历是对树的一种最基本的运算,所谓遍历二叉树,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。由于二叉树是非线性结构,因此,树的遍历实质上将二叉树的各个结点转换成为一个线性序列来表示。
先序遍历
首先访问根,再先序遍历左(右)子树,最后先序遍历右(左)子树。
先序遍历结果为:ABDFECGHI
中序遍历
首先中序遍历左(右)子树,再访问根,最后中序遍历右(左)子树。
中序遍历结果为:DBEFAGHCI
后序遍历
首先后序遍历左(右)子树,再后序遍历右(左)子树,最后访问根。
后续遍历结果为:DEFBHGICA
层序遍历
从根节点从上往下逐层遍历,在同一层,按从左到右的顺序对结点逐个访问。
动态创建二叉查找树