Funpack第六期-基于MAX32660-EVSYS具有心率和血氧检测智能手环

本文详细介绍了如何基于MAX32660-EVSYS开发板实现心率和血氧检测功能的手环项目。通过SPI、I2C和UART接口连接硬件,结合时间显示、数据处理代码,作者分享了学习过程中的心得,包括对底层接口的深入理解和数据处理的挑战。此外,还表达了对硬禾学堂和得捷电子提供的学习机会的感激之情。

1.功能实现

本代码主要实现了日期星期和时间显示以及心率和血氧浓度的检测功能。

2.硬件连接

MAX32660-EVSYS

使用了MAX32600的一个SPI接口、一个I2C接口和一个UART接口。

1.14寸LCD屏引脚 板卡引脚
SCL P0_6
SDA P0_5
DC P0_12
CS P0_7
RES RSTN
VCC/GND 单独供电3.3V(防止屏幕供电对控制器USB供电影响)
MAX30100引脚
SCL P0_8
SDA P0_9
VCC/GND USB供电
时间校准
USB转TTL的TX P0_11
USB转TTL的RX P0_10

3.数据处理

时间显示代码

static void display_real_time(void)
{
   
   
    uint32_t ge, shi, bai, qian, tmp;
    uint8_t enum_tmp;

    r_time.sec = RTC_GetSecond();
    r_time.update.bit.usec = UPDATE_ENABLE;

    /* sec */
    tmp = r_time.sec + p_time.sec[1] * 10 + p_time.sec[0];
    if((tmp % 60) == 0)
    {
   
   
        r_time.min = tmp / 60;
        r_time.update.bit.umin = UPDATE_ENABLE;
    }
    tmp %= 60;
    ge = tmp % 10;
    shi = tmp / 10;
    if(r_time.update.bit.usec)
    {
   
   
        r_time.update.bit.usec = UPDATE_DISABLE;
        LCD_ShowIntNum(WATCH_W + 120, WATCH_H, shi, 1, WHITE, BLACK, 32);
        LCD_ShowIntNum(WATCH_W + 140, WATCH_H, ge, 1, WHITE, BLACK, 32);
    }
    /* min */
    tmp = r_time.min + p_time.min[1] * 10 + p_time.min[0];
    if((tmp % 60) == 0)
    {
   
   
        r_time.hr = tmp / 60;
        r_time.update.bit.uhr = UPDATE_ENABLE;
    }
    tmp %= 60;
    ge = tmp % 10;
    shi = tmp / 10;
    if(r_time.update.bit.umin)
    {
   
   
        r_time.update.bit.umin = UPDATE_DISABLE;
        LCD_ShowIntNum(WATCH_W + 60, WATCH_H, shi, 1, WHITE, BLACK, 32);
        LCD_ShowIntNum(WATCH_W + 80, WATCH_H, ge, 1, WHITE, BLACK, 32);
        LCD_ShowChar(WATCH_W + 100, WATCH_H - 2, ':', WHITE, BLACK, 32, 0);	
    }
    /* hr */
    tmp = r_time.hr + p_time.hr[1] * 10 + p_time.hr[0];
    if((tmp % 24) == 0</
内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能与泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习深度学习基础,熟悉Python编程与PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集优化算法,提升对复杂时序预测任务的综合把控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值