Mi_Smart_Band_6(小米手环6)心跳数值PC显示

本文介绍了如何使用Python和小米手环6实现心跳数值在PC屏幕上实时显示。通过PULSOID应用将手环心跳数据传输到PC,并利用Websocket建立连接,展示在透明窗体上,方便用户随时关注健康状况。注意,此方法可能不适用于游戏场景,以免触发窗体检测导致封号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mi_Smart_Band_6(小米手环6)心跳数值PC屏幕显示

INTRODUCE

​ 为了让用户能明显的看到自己打游戏时的心动值(×,或者写代码时的心动值(ps:我在写这个项目的时候心动值一度到过130),等等,可以让用户快速了解自身状态并作出判断,也可以检测身体健康程度(这样就可以一天写24小时的代码了),还可以在项目的末尾增加心率过高或者过低自动求救的功能(未完成),目前网上都是用obs的浏览器源来进行直播时的心跳显示,这里我们是直接采用pyqt将获取的心跳显示于一个透明窗体直接置顶,这样就可以实时观看了。

TOOL

python+Mi_Smart_Band_6(原则上支持广播的手环应该都行)+PULSOID(Android也可以)

Start

1.将手环所测心跳传至PC

​ 这里我们用了PULSOID,iOS用户可以直接在AppStore里面下载,Android用户可以前往Google下载。

​ PC端直接点击上方超链接过去注册登录就好了。

PC端登录完毕之后

然后我们再对手机操作(以IOS为例)

首先需要打开XiaoMiBand的蓝牙广播和运动心率广播

iOS端的小米运动界面

这里打开完毕之后来到PULSOID界面,登录完毕点击Scan for all BLE devices

PULSOID界面1

然后这里不出意外的话,应该可以看到我们的Mi_Smart_Band_6了,连接上去就好了

PULSOID界面2

连接成功手机就没啥事儿了。

PULSOID界面3

然后在PC端随便选一个Free的主题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ySUCuveE-1642142559358)(https://cdn.jsdelivr.net/gh/EaKal-7/Image_bag@main/img/20220113152721.png)]

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值