- 博客(3)
- 收藏
- 关注
原创 Transformer模型的解析
这篇文章中提出了一种新的、简单的神经网络架构——Transformer。它通过attention注意力机制将encoder和decoder部分联接起来。基于单独的attention机制就完全避免了循环和卷积.Transformer在自然语言处理领域是一种备受关注的深度学习架构,在机器翻译和文本生成等任务上有了突破性进展。Transformer模型是由Google在2017年提出的,旨在解决传统的seq to seq模型在处理长距离依赖问题上的不足——长程依赖现象。
2025-05-26 21:37:27
1055
原创 Yolov8实现安全帽检测
本实验基于 YOLOv8 构建一个安全帽佩戴检测系统,旨在通过训练模型自动识别图像中“佩戴安全帽”和“未佩戴安全帽”的人员,从而为企业构建智能安全监管系统提供技术支持。
2025-05-06 11:09:23
765
1
原创 Yolov5实现叶病虫害检测
使用百度与林业大学合作开发的林业病虫害防治项目中用到昆虫数据集。AI识虫数据集结构如下:提供了2183张图片,其中训练集1693张,验证集245,测试集245张。包含7种昆虫,分别是Boerner、Leconte、Linnaeus、acuminatus、armandi、coleoptera和linnaeus。包含了图片和标注。
2025-05-05 09:28:30
733
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人