归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
一、归并操作
归并操作(merge),也叫归并算法,指的是将两个顺序序列合并成一个顺序序列的方法。
如 设有数列{6,202,100,301,38,8,1}
初始状态:6,202,100,301,38,8,1
第一次归并后:{6,202},{100,301},{8,38},{1},比较次数:3;
第二次归并后:{6,100,202,301},{1,8,38},比较次数:4;
第三次归并后:{1,6,8,38,100,202,301},比较次数:4;
总的比较次数为:3+4+4=11,;
逆序数为14;
二、算法描述
归并 排序是稳定的排序.即相等的元素的顺序不会改变.如输入记录 1(1) 3(2) 2(3) 2(4) 5(5) (括号中是记录的关键字)时输出的 1(1) 2(3) 2(4) 3(2) 5(5) 中的2 和 2 是按输入的顺序.这对要排序数据包含多个信息而要按其中的某一个信息排序,要求其它信息尽量按输入的顺序排列时很重要.这也是它比 快速排序优势的地方.
四、c程序
1)递归
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<string.h>
using namespace std;
void Merge(int sourceArr[],int tempArr[],int left,int mid,int right)
{
int i = left,j = mid+1,k = left;
while(i < mid+1 && j < right+1) {
if(sourceArr[i] >= sourceArr[j]){
tempArr[k++] = sourceArr[j++];
}
else{
tempArr[k++] = sourceArr[i++];
}
}
while(i <= mid){
tempArr[k++] = sourceArr[i++];
}
while(j <= right){
tempArr[k++] = sourceArr[j++];
}
for(int i = 0; i < k; i++)
{
sourceArr[i] = tempArr[i];
}
}
void mergeSort(int sourceArr[],int tempArr[],int left,int right)
{
if(left < right){
int mid = (left+right)/2;
mergeSort(sourceArr,tempArr,left,mid);
mergeSort(sourceArr,tempArr,mid+1,right);
Merge(sourceArr,tempArr,left,mid,right);
}
}
int main(){
int a[8] = {23,45,32,14,6,40,3,78},b[8];
mergeSort(a,b,0,7);
for(int i = 0; i < 8; i++){
printf("%d ",a[i]);
}
return 0;
}
2)非递归
五、复杂度