题目描述
windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。
现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过
某有向边的时间严格为给定的时间。
输入格式
输入文件road.in第一行包含两个整数,N T。
接下来有 N 行,每行一个长度为 N 的字符串。
第 i行第j列为’0’表示从节点i到节点j没有边。 为’1’到’9’表示从节点i到节点j需要耗费的时间。
输出格式
输出文件road.out包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以2009的余数。
【输入样例二】
5 30
12045
07105
47805
12024
12345
【输出样例二】
852
样例
样例输入
2 2
11
00
样例输出
1
数据范围与提示
【样例解释一】 0->0->1
【数据规模和约定】
30%的数据,满足 2 <= N <= 5 ; 1 <= T <= 30 。
100%的数据,满足 2 <= N <= 10 ; 1 <= T <= 1000000000 。
来源
scoi2009
积累一下矩阵快速幂模板。
#include<bits/stdc++.h>
using namespace std;
const int N=128;
const int mo=2009;
int n,T;
struct mat{
int a[N][N];
void clr(){
memset(a,0,sizeof(a));
}
}a;
mat operator *(mat a,mat b){
mat re;
re.clr();
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
for(int k=1;k<=n;k++){
re.a[i][j]=(re.a[i][j]+a.a[i][k]*b.a[k][j]%mo)%mo;
}
}
}
return re;
}
mat operator ^(mat a,int b){
mat re;re.clr();
for(int i=1;i<=n;i++)re.a[i][i]=1;
while(b){
if(b&1)re=re*a;
a=a*a;
b>>=1;
}
return re;
}
int main(){
scanf("%d%d",&n,&T);
int n1=n;
n=n*9;
for(int i=1;i<=n1;i++){
for(int j=1;j<=8;j++){
a.a[9*(i-1)+j][9*(i-1)+j+1]=1;
}
}
char s[32];
for(int i=1;i<=n1;i++){
scanf("%s",s+1);
for(int j=1;j<=n1;j++){
if(s[j]>'0'){
a.a[9*(i-1)+s[j]-'0'][9*(j-1)+1]=1;
}
}
}
a=a^T;
printf("%d",a.a[1][n1*9-8]);
return 0;
}
/*
5 30
12045
07105
47805
12024
12345
*/