#4037. 迷路(road)

题目描述

windy在有向图中迷路了。 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1。

现在给出该有向图,你能告诉windy总共有多少种不同的路径吗? 注意:windy不能在某个节点逗留,且通过

某有向边的时间严格为给定的时间。
输入格式

输入文件road.in第一行包含两个整数,N T。

接下来有 N 行,每行一个长度为 N 的字符串。

第 i行第j列为’0’表示从节点i到节点j没有边。 为’1’到’9’表示从节点i到节点j需要耗费的时间。
输出格式

输出文件road.out包含一个整数,可能的路径数,这个数可能很大,只需输出这个数除以2009的余数。

【输入样例二】

5 30

12045

07105

47805

12024

12345

【输出样例二】

852

样例
样例输入

2 2
11
00

样例输出

1

数据范围与提示

【样例解释一】 0->0->1

【数据规模和约定】

30%的数据,满足 2 <= N <= 5 ; 1 <= T <= 30 。

100%的数据,满足 2 <= N <= 10 ; 1 <= T <= 1000000000 。
来源

scoi2009
积累一下矩阵快速幂模板。

#include<bits/stdc++.h>
using namespace std;
const int N=128;
const int mo=2009;
int n,T;
struct mat{
    int a[N][N];
    void clr(){
        memset(a,0,sizeof(a));
    }
}a;
mat operator *(mat a,mat b){
    mat re;
    re.clr();
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            for(int k=1;k<=n;k++){
                re.a[i][j]=(re.a[i][j]+a.a[i][k]*b.a[k][j]%mo)%mo;
            }
        }
    }
    return re;
}
mat operator ^(mat a,int b){
    mat re;re.clr();
    for(int i=1;i<=n;i++)re.a[i][i]=1;
    while(b){
        if(b&1)re=re*a;
        a=a*a;
        b>>=1;
    }
    return re;
}
int main(){
    scanf("%d%d",&n,&T);
    int n1=n;
    n=n*9;
    for(int i=1;i<=n1;i++){
        for(int j=1;j<=8;j++){
            a.a[9*(i-1)+j][9*(i-1)+j+1]=1;
        }
    }
    char s[32];
    for(int i=1;i<=n1;i++){
        scanf("%s",s+1);
        for(int j=1;j<=n1;j++){
            if(s[j]>'0'){
                a.a[9*(i-1)+s[j]-'0'][9*(j-1)+1]=1;
            }
        }
    }
    a=a^T;
    printf("%d",a.a[1][n1*9-8]);
    return 0;
}
/*
5 30
12045
07105
47805
12024
12345
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值