http://acm.hdu.edu.cn/showproblem.php?pid=1527
取石子游戏
Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
Sample Input
2 1
8 4
4 7
Sample Output
0
1
0
Source
Recommend
LL
思路:威佐夫博奕问题,最重要的是判断当前是否是奇异局势(奇异局势能够确定必胜态和必败态),若开始时是非奇异局势,则先拿者必胜,反之后拿者取胜。这里有个的奇异局势是,(a=aj,bj=aj+j,),即a=[j*(1+sqrt(5.0))/2];
#include<stdio.h>
#include<math.h>
int main()
{
int a,b,m,k,t;
while(~scanf("%d%d",&a,&b))
{
if(a>b)
{
t=a;
a=b;
b=t;
}
k=b-a;
m=(int)((sqrt(5.0)+1)*k/2);
printf("%d\n", m==a? 0:1);
}
return 0;
}