目的:区分迭代器和生成器。生成器属于一种惰性计算;属于生成器的不一定是迭代器,属于迭代器的一定是生产器;
迭代器可以next()函数进行访问,生产器通过for进行访问遍历。
# 一维情况下做赋值操作
# 生成器 从开头 ,Next,用于惰性计算
# 无任何生成初始化的开销,省内存, 用到了才计算,未用到,不计算
# yield 可控多线程
import time
def func_test1(n):
stars=time.time()
tt=[x*x for x in range(n)]
print(tt[:10]) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
ends=time.time()
print(ends-stars) # 0.18158674240112305
stars=time.time()
tt=(x*x for x in range(n)) # 生成器 一定要用()代替[]
print([next(tt) for i in range(10)]) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
ends=time.time()
print(ends-stars) # 0.025921344757080078
def my_func(T):
if T<1:
return 1
n,a,b=1,1,2
while n<T:
yield b
a,b=b,a+b
n+=1
def my_func1(T):
if T<1:
return 1
n,a,b=1,1,2
while n<T:
a,b=b,a+b
n+=1
return b
# 生成器测试
def my_func_test():
S=time.time()
f=my_func(10000)
li1=[i for i in f]
# print(li1)
E=time.time()
print(E-S) # 0.005013942718505859
S=time.time()
li2=[my_func1(i) for i in range(1,10000)] # 存在大量重复计算
# print(li2)
E=time.time()
print(E-S) # 10.58568024635315
if len(li1) == len(li2):
flag=True
for i in range(len(li1)):
if li1[i]!=li2[i]:
print("error, not equal")
flag=False
break
if flag:
print("equal") # equal
else:
print(len(li1))
print(len(li2))
print("not equal")
from collections import Iterable,Iterator
# 迭代器测试
# 可迭代对象:可直接作用于for循环的对象中
# 迭代器:可被next()函数调用,并不断返回下一个值的对象
# list,str,dict,set等是可迭代对象,但不算迭代器
def func_iter():
print(isinstance([1,2,3],Iterable)) # True 是迭代对象
print(isinstance([1,2,3],Iterator)) # False 不是迭代器
print(isinstance((1,2,3),Iterator)) # False 不是迭代器
print(isinstance((1,2,3),Iterator)) # False
print(isinstance((1,2,3),Iterable)) # True
print(isinstance({},Iterable)) # True
print(isinstance({},Iterator)) # False
g=(x*x for x in range(15))
print(type(g)) # <class 'generator'>
print(isinstance(g,Iterator)) # True
print(isinstance(g,Iterable)) # True
li=[i for i in g]
print(li) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196]
g1 = (x * x for x in range(15))
li=[next(g1) for i in range(15)]
print(li) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196]