对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列。简单的说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
由AOV网构造拓扑序列的拓扑排序算法主要是循环执行以下两步,直到不存在入度为0的顶点为止。
(1) 选择一个入度为0的顶点并输出之;
(2) 从网中删除此顶点及所有出边。
循环结束后,若输出的顶点数小于网中的顶点数,则输出“有回路”信息,否则输出的顶点序
题目链接
这里先使用数组进行排序,但是发现有用队列进行排序的,所有准备学会队列进行拓扑排序后再进行优化
//某点入度,有多少条路径指向该点
//数组实现拓扑排序
#include <iostream>
#include <string.h>
using namespace std;
int G[510][510];
int d[510];
void topsort(int n)
{
int k;
for(int i = 1; i <= n; i++){
for(int j = 1; j <= n; j++){//从大到小找到入度为0的点
if(!d[j]){
cout<<j;
d[j]--;//将其标为-1防止下次循环误判
k = j;
break;
}
}
for(int j = 1; j <= n; j++){
if(G[k][j]){
G[k][j] = 0;//将k点所有的边全部删除
d[j]--;//入度减一
}
}
if(i != n)
cout<<' ';
else
cout<<endl;
}
}
int main()
{
int n,m;
while(cin>>n>>m){
memset(G,0,sizeof(G));
memset(d,0,sizeof(d));
while(m--){
int b,e;
cin>>b>>e;
if(!G[b][e]){//记录e是否被b打败过,防止重复记录
G[b][e] = 1;
d[e]++;//e的入度+1
}
}
topsort(n);
}
return 0;
}
下面使用队列进行操作,由于是输出最小序列,所以这里使用优先队列
有些拓扑排序要求字典序最小什么的,那就把队列换成优先队列就好了
//某点入度,有多少条路径指向该点
//队列实现拓扑排序,存储用的数组可以换成vector;
#include <iostream>
#include <string.h>
#include <queue>
#include <vector>
using namespace std;
int G[510][510];
int d[510];
void topsort(int n)
{
priority_queue<int,vector<int>,greater<int> > q;
int k;
int in[505];
memset(in, 0, sizeof(in));
for(int i = 1; i <= n; i++){
if(!d[i]){
q.push(i);
}
}
int count = 0;
while(!q.empty()){
int p = q.top();
q.pop();
in[count] = p;
count++;
for(int i = 1; i <= n; i++){
int x = G[p][i];
d[x]--;
if(!d[x]){
q.push(i);
}
}
}
for(int i = 0; i < n - 1; i++){
cout<<in[i]<<' ';
}
cout<<in[n - 1]<<endl;
}
int main()
{
int n,m;
while(cin>>n>>m){
memset(G,0,sizeof(G));
memset(d,0,sizeof(d));
while(m--){
int b,e;
cin>>b>>e;
if(!G[b][e]){//记录e是否被b打败过,防止重复记录
G[b][e] = e;
d[e]++;//e的入度+1
}
}
topsort(n);
}
return 0;
}
还有一种形式
代码如下
//某点入度,有多少条路径指向该点
//队列实现拓扑排序,存储用的数组可以换成vector;
#include <iostream>
#include <string.h>
#include <queue>
#include <vector>
using namespace std;
int G[510][510];
int d[510];
void topsort(int n)
{
priority_queue<int,vector<int>,greater<int> > q;
int k;
int in[505];
memset(in, 0, sizeof(in));
for(int i = 1; i <= n; i++){
if(!d[i]){
q.push(i);
}
}
int count = 0;
while(!q.empty()){
int p = q.top();
q.pop();
in[count] = p;
count++;
for(int i = 1; i <= n; i++){
if(G[p][i]){
d[i]--;
if(!d[i])
q.push(i);
}
}
}
for(int i = 0; i < n - 1; i++){
cout<<in[i]<<' ';
}
cout<<in[n - 1]<<endl;
}
int main()
{
int n,m;
while(cin>>n>>m){
memset(G,0,sizeof(G));
memset(d,0,sizeof(d));
while(m--){
int b,e;
cin>>b>>e;
if(!G[b][e]){//记录e是否被b打败过,防止重复记录
G[b][e] = 1;
d[e]++;//e的入度+1
}
}
topsort(n);
}
return 0;
}