过桥问题 (贪心)

题目链接
一个典型的过桥问题
代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
#include <queue>

using namespace std;

int main()
{
    int n,stu[105];
    cin>>n;
    for(int i = 0; i < n; i++){
        cin>>stu[i];
    }
    sort(stu,stu + n);
    int s = n;
    int time = 0;
    while(s > 3){
        if(stu[0] + stu[s - 2] > stu[1] * 2){
            time += stu[1] * 2 + stu[s - 1] + stu[0];
        }
        else{
            time += stu[0] * 2 + stu[s - 1] + stu[s - 2];
        }
        s -= 2;
    }
    if(s == 2){
        time += stu[1];
    }
    if(s == 3){
        time += stu[0] + stu[1] + stu[2];
    }
    cout<<time<<endl;
    return 0;
}

至于如何构造,这里参考了最快过桥

最佳方案构造:以下是构造N个人(N≥1)过桥最佳方案的方法:1) 如果N=1、2,所有人直接过桥。2) 如果N=3,由最快的人往返一次把其他两人送过河。3) 如果N≥4,设A、B为走得最快和次快的旅行者,过桥所需时间分别为a、b;
而Z、Y为走得最慢和次慢的旅行者,过桥所需时间分别为z、y。那么
当2b>a+y时,使用模式一将Z和Y移动过桥;
当2b<a+y时,使用模式二将Z和Y移动过桥;
当2b=a+y时,使用模式一将Z和Y移动过桥。
模式一:用a把z送过去,a回来。再用a把y送过去,a再回来。(time1=z+a+y+a)
模式二:a,b先过去。a回来。y,z过去,b回来。(time2=b+a+z+b)
mintime=min(time1,time2);//这也是上面得出的不等式
一是最快带最慢两人,即过桥情况是ay、a、az和a,先把y和z先送过;
二是最快和次快的带最慢和次慢,即过桥的情况是ab、a、yz和b,先把y和z先送过;
这两种情况所花的时间有所不同,尽量选时间短的方案;
以及 最快过桥问题证明虽然我看不懂。。

还有一种dp的解法,emm等学习dp的时候再进行研究吧

### 关于公平过桥问题的设计思路图 对于公平过桥问题设计思路图,虽然CVPR2022的论文列表提供了大量计算机视觉领域的研究进展[^1],但该会议论文集并未直接涉及具体到公平过桥问题算法可视化的内容。 然而,在一般情况下,解决此类问题通常会涉及到以下几个方面: #### 1. 定义参与者及其属性 明确哪些实体参与过桥过程以及它们各自的特性(如速度差异),这是构建任何解决方案的基础。 #### 2. 设定规则与约束条件 规定允许的操作范围,比如一次最多可以有多少人一起过桥;手电筒的存在与否及使用方式等特殊因素也需纳入考虑之中。 #### 3. 探索最优路径策略 通过穷举法或其他启发式方法来寻找最短时间内的安全通行方案。这一步骤可能还会应用动态规划、回溯算法或是贪心算法等多种编程技巧实现效率优化。 #### 4. 可视化表达逻辑流程 利用图表形式展示上述各个阶段之间的关系,使读者能够直观理解整个解题框架。例如采用流程图表示决策树结构,或者借助动画模拟实际移动情景帮助阐释复杂概念。 ```python import matplotlib.pyplot as plt from matplotlib.patches import Rectangle def draw_bridge_problem(): fig, ax = plt.subplots() # 绘制河流和桥梁 river = Rectangle((-5,-1), 10, 2, edgecolor='blue', facecolor='lightblue') bridge = Rectangle((0,0), 2, 0.2, edgecolor='brown', facecolor='saddlebrown') ax.add_patch(river) ax.add_patch(bridge) # 添加人物位置标记 person_positions = [-4, -2, 2, 4] # 假设有四位行人分别位于不同起点 for pos in person_positions: circle = plt.Circle((pos, 0), radius=0.2, color="red", fill=True) ax.add_artist(circle) ax.set_xlim(-6, 6) ax.set_ylim(-3, 3) ax.axis('off') # 隐藏坐标轴 plt.show() draw_bridge_problem() ``` 此代码片段提供了一个简单的图形界面用于描绘基本场景设置,即河两岸分布着等待过桥的人物形象,并有一座连接两端的小桥。为了更全面地展现完整的公平过桥问题设计方案,则还需要进一步扩展和完善这个基础模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值