维修数列-平衡树的硬板子

题目链接

  题意就是一个简单的平衡树的板子,但是在实现上有很多细节,蒟蒻的我竟然debug了3天,只能说自己的板子不硬,更新下板子
 因为细节挺多的(至少我觉得是,所以就直接以注释的形式写在代码里了)但是要注意,这里说的子列是连续的子列。
 因为看网上的题解说的好像在bzoj上一直开新点会内存超限,为了防止也出现这个情况,我特意学了一手节点回收分配(虽然最后也没啥用好像)

超长代码(捂脸)

#include <bits/stdc++.h>
#define ss system("pause");

using namespace std;

const int maxn = 500000;
const int INF = 1e9;

/********************
splay树
********************/

struct  node
{
	int f,val,size,ch[2],cnt;
    int sum,lmax,rmax,maxsum;
    bool rev,tag;
	node() {}
	node(int v){
		f = ch[0] = ch[1] = rev = tag = 0;
		size = cnt = 1;
		val = sum = lmax = rmax = maxsum = v;
	}
}tree[maxn];

int root,sz,top;
int org[maxn],sta[maxn];

inline void splay(int x,int goal);
int findkth(int x);

//节点分配回收机制
inline int new_node()
{
	return top?sta[top--]:++sz;
}

inline void update(int x)
{
	//对0节点进行初始赋值的原因就在于防止0节点影响对于有负值节点的更新
	//会造成负数值的更新出现问题
	int lc = tree[x].ch[0],rc = tree[x].ch[1];
	tree[x].size = tree[lc].size + tree[rc].size + 1;
    tree[x].sum = tree[lc].sum + tree[rc].sum + tree[x].val;
	tree[x].maxsum = max(max(tree[lc].maxsum,tree[rc].maxsum),max(0,tree[lc].rmax) + tree[x].val + max(0,tree[rc].lmax));
    tree[x].lmax = max(tree[lc].lmax,max(0,tree[rc].lmax) + tree[x].val + tree[lc].sum);
    tree[x].rmax = max(tree[rc].rmax,max(0,tree[lc].rmax) + tree[x].val + tree[rc].sum);
}

void Replace(int x,int d)
{
    if(!x) return ;
    tree[x].val = d;
    tree[x].sum = d * tree[x].size;
    tree[x].maxsum = tree[x].lmax = tree[x].rmax = max(d,d * tree[x].size);
    tree[x].rev = 0,tree[x].tag = 1;
}

void Mak(int pos,int tot,int d)//把指定区间全部转化成指定值
{
	int l = pos - 1,r = pos + tot;
	l = findkth(l),r = findkth(r);
	splay(l,0),splay(r,l);
	int u = tree[root].ch[1];
	Replace(tree[u].ch[0],d);
	update(u),update(root);
}

inline void rev(int x)
{
	if(tree[x].tag) return ;
	tree[x].rev ^= 1;
	swap(tree[x].ch[0],tree[x].ch[1]);
	swap(tree[x].lmax,tree[x].rmax);//左右的最大值也会跟着反转
}

inline void pushdown(int x)
{
    if(tree[x].rev){
		if(tree[x].ch[0]) rev(tree[x].ch[0]);
		if(tree[x].ch[1]) rev(tree[x].ch[1]);
        tree[x].rev = 0;
    }
    if(tree[x].tag){
		if(tree[x].ch[0]) Replace(tree[x].ch[0],tree[x].val);
        if(tree[x].ch[1]) Replace(tree[x].ch[1],tree[x].val);
        tree[x].tag = 0;
	}
}

inline void rotate(int x)
{
	int fa = tree[x].f,gfa = tree[fa].f;
	pushdown(x),pushdown(fa), pushdown(gfa);
	//判断x是父节点的哪个儿子,0为左,1为右
	int k = (tree[fa].ch[1] == x);
	//把x的父节点在gfa的位置用x取代
	tree[gfa].ch[tree[gfa].ch[1] == fa] = x;
	tree[x].f = gfa;//x的父亲节点变成了gfa
	tree[fa].ch[k] = tree[x].ch[k^1];
	tree[tree[x].ch[k^1]].f = fa;
	tree[x].ch[k^1] = fa;
	tree[fa].f = x;
	update(fa),update(x);
}

inline void splay(int x,int goal)
{
	//pushdown(x);
	while(tree[x].f != goal){
		int fa = tree[x].f , gfa = tree[fa].f;
		if(gfa != goal){
			((tree[gfa].ch[0] == fa) ^ (tree[fa].ch[0] == x)) ? rotate(x) : rotate(fa);
		}
		rotate(x);
	}
	if(goal == 0) root = x;
}

void build_tree(int &rt,int l, int r, int fa)
{
	int mid = (l + r) >> 1;
	rt = new_node();
	tree[rt] = node(org[mid]);
	tree[rt].f = fa;
	if(l == r) return ;
	if(l < mid) build_tree(tree[rt].ch[0],l, mid - 1,rt);
	if(r > mid) build_tree(tree[rt].ch[1],mid + 1,r, rt);
	update(rt);
}

int findkth(int x)
{
	if(tree[root].size < x) return -1;
	int u = root;
	while(1){
		pushdown(u);
		if(x <= tree[tree[u].ch[0]].size){
			u = tree[u].ch[0];
		}
		else if(x <= tree[tree[u].ch[0]].size + tree[u].cnt){
			return u;
		}
		else{
			x -= (tree[tree[u].ch[0]].size + tree[u].cnt);
			u = tree[u].ch[1];
		}
	}
}

 void Reverse(int x,int tot)
 {
 	int l = x - 1,r = x + tot;
 	l = findkth(l) , r = findkth(r);
 	splay(l,0),splay(r,l);
 	int u = tree[root].ch[1];
 	int pos = tree[u].ch[0];
	if(tree[pos].tag) return ;//如果这个区间已经被标记整体修改了,就没有必要反转了
	rev(pos);
	//这里反转不能像之前一样打标记就可以了
	//因为反转完这个序列的最大左右值肯定会变化
	//所以要直接反转完并进行值的更新,这个标记是指的子节点
	update(u),update(root);
 }

void erase(int x)
{
	if(!x) return ;
	sta[++top] = x;
	erase(tree[x].ch[0]),erase(tree[x].ch[1]);
}

void cut(int a,int tot)
{
	int l = a - 1,r = a + tot;
	l = findkth(l) , r = findkth(r);
	splay(l,0),splay(r,l);
	int u = tree[root].ch[1];
	erase(tree[u].ch[0]),tree[u].ch[0] = 0;
	update(u),update(root);
}

void add(int pos,int tot)
{
    for(int i = 1; i <= tot; i++){
        scanf("%d",org + i);
    }
	//将区间[a,b]后接到c后面
	int l = pos,  r = pos + 1;
	l = findkth(l) , r = findkth(r);
	splay(l,0) , splay(r, l);
	int u = tree[root].ch[1];
    build_tree(tree[u].ch[0],1,tot,u);
	update(u),update(root);
}

//获取区间和
int Get_Sum(int pos,int tot)
{
    int l = pos - 1,r = pos + tot;
    l = findkth(l) , r = findkth(r);
	splay(l,0), splay(r,l);
    int u = tree[root].ch[1];
    return tree[tree[u].ch[0]].sum;
}

void inorder(int rt)
{
	if(!rt) return ;
	pushdown(rt);
	if(tree[rt].ch[0]) inorder(tree[rt].ch[0]);
	cout<<tree[rt].val<<' ';
	if(tree[rt].ch[1]) inorder(tree[rt].ch[1]);
}

int main()
{
	int n,q;
	string s;
	scanf("%d%d",&n,&q);
	for(int i = 1; i <= n; i++) scanf("%d",org + i + 1);
	org[1] = org[n + 2] = -INF;
	//由于不存在的节点标志为0,所以为了防止update时把0节点也错误计算进去,要对0节点进行赋值
	//-INF是为了防止更新区间最大值的时候,把一些节点的负数值判定为0,造成部分的最大值的和会偏大
	tree[0] = node(-INF),tree[0].size = tree[0].sum = 0;
	build_tree(root,1,n + 2,0);		
	while(q--){
		cin>>s;
		if(s == "MAX-SUM") printf("%d\n",tree[root].maxsum);
		else {
			int pos,tot;
			scanf("%d%d",&pos,&tot);
			if(s == "GET-SUM"){
				int ans = Get_Sum(pos + 1,tot);
				printf("%d\n",ans);
			}
			if(s == "INSERT") add(pos + 1,tot);
			if(s == "MAKE-SAME"){
				int d;
				scanf("%d",&d);
				Mak(pos + 1,tot,d);
			}
			if(s == "DELETE") cut(pos + 1,tot);
			if(s == "REVERSE") Reverse(pos + 1,tot);
		}
		//inorder(root);
	    //cout<<endl;
	}
	//ss;
	return 0;
}

再加一个洛谷上相似的例题:
SP4487 GSS6 - Can you answer these queries VI

只是把区间操作换成了单点

code

#include <bits/stdc++.h>
#define ss system("pause");

using namespace std;

const int maxn = 500000;
const int INF = 1e9;

/********************
splay树
********************/

struct  node
{
	int f,val,size,ch[2],cnt;
    int sum,lmax,rmax,maxsum;
    bool rev,tag;
	node() {}
	node(int v){
		f = ch[0] = ch[1] = rev = tag = 0;
		size = cnt = 1;
		val = sum = lmax = rmax = maxsum = v;
	}
}tree[maxn];

int root,sz,top;
int org[maxn],sta[maxn];

inline void splay(int x,int goal);
int findkth(int x);

//节点分配回收机制
inline int new_node()
{
	return top?sta[top--]:++sz;
}

inline void update(int x)
{
	//对0节点进行初始赋值的原因就在于防止0节点影响对于有负值节点的更新
	//会造成负数值的更新出现问题
	int lc = tree[x].ch[0],rc = tree[x].ch[1];
	tree[x].size = tree[lc].size + tree[rc].size + 1;
    tree[x].sum = tree[lc].sum + tree[rc].sum + tree[x].val;
	tree[x].maxsum = max(max(tree[lc].maxsum,tree[rc].maxsum),max(0,tree[lc].rmax) + tree[x].val + max(0,tree[rc].lmax));
    tree[x].lmax = max(tree[lc].lmax,max(0,tree[rc].lmax) + tree[x].val + tree[lc].sum);
    tree[x].rmax = max(tree[rc].rmax,max(0,tree[lc].rmax) + tree[x].val + tree[rc].sum);
}

void Replace(int x,int d)
{
    if(!x) return ;
    tree[x].val = d;
    tree[x].sum = d * tree[x].size;
    tree[x].maxsum = tree[x].lmax = tree[x].rmax = max(d,d * tree[x].size);
    tree[x].rev = 0,tree[x].tag = 1;
}

void Mak(int pos,int tot,int d)//把指定区间全部转化成指定值
{
	int l = pos - 1,r = pos + tot;
	l = findkth(l),r = findkth(r);
	splay(l,0),splay(r,l);
	int u = tree[root].ch[1];
	Replace(tree[u].ch[0],d);
	update(u),update(root);
}

inline void rev(int x)
{
	if(tree[x].tag) return ;
	tree[x].rev ^= 1;
	swap(tree[x].ch[0],tree[x].ch[1]);
	swap(tree[x].lmax,tree[x].rmax);//左右的最大值也会跟着反转
}

inline void pushdown(int x)
{
    if(tree[x].rev){
		if(tree[x].ch[0]) rev(tree[x].ch[0]);
		if(tree[x].ch[1]) rev(tree[x].ch[1]);
        tree[x].rev = 0;
    }
    if(tree[x].tag){
		if(tree[x].ch[0]) Replace(tree[x].ch[0],tree[x].val);
        if(tree[x].ch[1]) Replace(tree[x].ch[1],tree[x].val);
        tree[x].tag = 0;
	}
}

inline void rotate(int x)
{
	int fa = tree[x].f,gfa = tree[fa].f;
	pushdown(x),pushdown(fa), pushdown(gfa);
	//判断x是父节点的哪个儿子,0为左,1为右
	int k = (tree[fa].ch[1] == x);
	//把x的父节点在gfa的位置用x取代
	tree[gfa].ch[tree[gfa].ch[1] == fa] = x;
	tree[x].f = gfa;//x的父亲节点变成了gfa
	tree[fa].ch[k] = tree[x].ch[k^1];
	tree[tree[x].ch[k^1]].f = fa;
	tree[x].ch[k^1] = fa;
	tree[fa].f = x;
	update(fa),update(x);
}

inline void splay(int x,int goal)
{
	//pushdown(x);
	while(tree[x].f != goal){
		int fa = tree[x].f , gfa = tree[fa].f;
		if(gfa != goal){
			((tree[gfa].ch[0] == fa) ^ (tree[fa].ch[0] == x)) ? rotate(x) : rotate(fa);
		}
		rotate(x);
	}
	if(goal == 0) root = x;
}

void build_tree(int &rt,int l, int r, int fa)
{
	int mid = (l + r) >> 1;
	rt = new_node();
	tree[rt] = node(org[mid]);
	tree[rt].f = fa;
	if(l == r) return ;
	if(l < mid) build_tree(tree[rt].ch[0],l, mid - 1,rt);
	if(r > mid) build_tree(tree[rt].ch[1],mid + 1,r, rt);
	update(rt);
}

int findkth(int x)
{
	if(tree[root].size < x) return -1;
	int u = root;
	while(1){
		pushdown(u);
		if(x <= tree[tree[u].ch[0]].size){
			u = tree[u].ch[0];
		}
		else if(x <= tree[tree[u].ch[0]].size + tree[u].cnt){
			return u;
		}
		else{
			x -= (tree[tree[u].ch[0]].size + tree[u].cnt);
			u = tree[u].ch[1];
		}
	}
}

 void Reverse(int x,int tot)
 {
 	int l = x - 1,r = x + tot;
 	l = findkth(l) , r = findkth(r);
 	splay(l,0),splay(r,l);
 	int u = tree[root].ch[1];
 	int pos = tree[u].ch[0];
	if(tree[pos].tag) return ;//如果这个区间已经被标记整体修改了,就没有必要反转了
	rev(pos);
	//这里反转不能像之前一样打标记就可以了
	//因为反转完这个序列的最大左右值肯定会变化
	//所以要直接反转完并进行值的更新,这个标记是指的子节点
	update(u),update(root);
 }

void erase(int x)
{
	if(!x) return ;
	sta[++top] = x;
	erase(tree[x].ch[0]),erase(tree[x].ch[1]);
}

void cut(int a,int tot)
{
	int l = a - 1,r = a + tot;
	l = findkth(l) , r = findkth(r);
	splay(l,0),splay(r,l);
	int u = tree[root].ch[1];
	erase(tree[u].ch[0]),tree[u].ch[0] = 0;
	update(u),update(root);
}

void add(int pos,int tot)
{
    for(int i = 1; i <= tot; i++){
        scanf("%d",org + i);
    }
	//将区间[a,b]后接到c后面
	int l = pos,  r = pos + 1;
	l = findkth(l) , r = findkth(r);
	splay(l,0) , splay(r, l);
	int u = tree[root].ch[1];
    build_tree(tree[u].ch[0],1,tot,u);
	update(u),update(root);
}

//获取区间和
int Get_Sum(int pos,int tot)
{
    int l = pos - 1,r = pos + tot;
    l = findkth(l) , r = findkth(r);
	splay(l,0), splay(r,l);
    int u = tree[root].ch[1];
    return tree[tree[u].ch[0]].maxsum;
}

void inorder(int rt)
{
	if(!rt) return ;
	pushdown(rt);
	if(tree[rt].ch[0]) inorder(tree[rt].ch[0]);
	cout<<tree[rt].val<<' ';
	if(tree[rt].ch[1]) inorder(tree[rt].ch[1]);
}

int main()
{
	int n,q;
	char s[2];
	scanf("%d",&n);
	for(int i = 1; i <= n; i++) scanf("%d",org + i + 1);
	org[1] = org[n + 2] = -INF;
	//由于不存在的节点标志为0,所以为了防止update时把0节点也错误计算进去,要对0节点进行赋值
	//-INF是为了防止更新区间最大值的时候,把一些节点的负数值判定为0,造成部分的最大值的和会偏大
	tree[0] = node(-INF),tree[0].size = tree[0].sum = 0;
	build_tree(root,1,n + 2,0);
	scanf("%d",&q);
	while(q--){
		scanf("%s",s);
		int pos,l,r;
		if(s[0] == 'I'){
			scanf("%d",&pos);
			add(pos,1);
		}
		if(s[0] == 'D'){
			scanf("%d",&pos);
			cut(pos + 1,1);
		}
		if(s[0] == 'R'){
			int val;
			scanf("%d%d",&pos,&val);
			Mak(pos + 1,1,val);
		}
		if(s[0] == 'Q'){
			int l,r;
			scanf("%d%d",&l,&r);
			int ans = Get_Sum(l + 1,r - l + 1);
			printf("%d\n",ans);
		}
	}
	//ss;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值