已知一个固定概率的不等概率事件,求出一个等概率事件

1.已知fx为固定概率的不等概率事件,求出一个gx的等概率事件

分析:

1.fx为固定概率事件,就能转换为固定概率的0,1事件 f2: 归一化

2. f2既然为0,1事件,执行两次,必然后四种情况,[0,0],[0,1],[1,0],[1,1]。因为非固定事件,所以四种概率不同,但是我不在乎,相不相同,去掉[0,0]和[1,1],剩余的[1,0] ,[0,1]事件发生的概率是相同的。即p(1-p) =(1-p)p

/**
     * fx 为一个 大于12 的概率为0.84,小于12 的概率为0.12,等于12的概率为0.04 的事件,求一个等概率事件gx
     */

    // fx转换为0,1事件
    public static int f2() {
        int ans = 0;
        do {
            return ans > 12 ? 0 : 1;
        } while (ans == 12);
    }

    /**
     * 0,1事件构建等概率gx
     *
     * @return
     */
    public static int gx() {
        int x = 0;
        do {
            x = f2();
        } while (x == f2());//x==f2() ,有两种场景 1==1,0==0
        //换句话说,x !=f2(),就剩下两种场景 0,1 发生,或者1,0发生,这两个事件发生等概率,即 p(1-p) ==(1-p)p
        return x;
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值