1.已知fx为固定概率的不等概率事件,求出一个gx的等概率事件
分析:
1.fx为固定概率事件,就能转换为固定概率的0,1事件 f2: 归一化
2. f2既然为0,1事件,执行两次,必然后四种情况,[0,0],[0,1],[1,0],[1,1]。因为非固定事件,所以四种概率不同,但是我不在乎,相不相同,去掉[0,0]和[1,1],剩余的[1,0] ,[0,1]事件发生的概率是相同的。即p(1-p) =(1-p)p
/**
* fx 为一个 大于12 的概率为0.84,小于12 的概率为0.12,等于12的概率为0.04 的事件,求一个等概率事件gx
*/
// fx转换为0,1事件
public static int f2() {
int ans = 0;
do {
return ans > 12 ? 0 : 1;
} while (ans == 12);
}
/**
* 0,1事件构建等概率gx
*
* @return
*/
public static int gx() {
int x = 0;
do {
x = f2();
} while (x == f2());//x==f2() ,有两种场景 1==1,0==0
//换句话说,x !=f2(),就剩下两种场景 0,1 发生,或者1,0发生,这两个事件发生等概率,即 p(1-p) ==(1-p)p
return x;
}