题目
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成。
首先从1开始写出自然数1,2,3,4,5,6,....
1 就是第一个幸运数。
我们从2这个数开始。把所有序号能被2整除的项删除,变为:
1 _ 3 _ 5 _ 7 _ 9 ....
把它们缩紧,重新记序,为:
1 3 5 7 9 .... 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, ...
此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,...)
最后剩下的序列类似:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, ...
输入格式
输入两个正整数m n, 用空格分开 (m < n < 1000*1000)
输出格式
程序输出 位于m和n之间的幸运数的个数(不包含m和n)。
样例输入1
1 20
样例输出1
5
样例输入2
30 69
样例输出2
8
思路:
1.首先由于位置为2的时隔一个一删除,所以先处理。
2.定义一个变量p用来记录当前数据的位置
package shengsai;
import java.util.Scanner;
public class xingyun08 {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int m=sc.nextInt();
int n=sc.nextInt();
int []a=new int [n];//存储数据的数组(因为m小于n)
for(int i=0;i<n;i++)//把2的倍数的位置已经删除
{
a[i]=2*i+1;
}
int l=1;
while(true)
{
int p=l+1;//记录数字向前挪动的位置
for(int i=l+1;i<n;i++)
{
if((i+1)%a[l]==0){}
else {
a[p]=a[i];
p++;
}
if(a[i]>n)break;
}
/*for(int i=0;i<n;i++)
{
System.out.print(a[i]+" ");
}
System.out.println();*/
l++;
if(a[l]>=n)break;
}
int ans=0;
for(int i=0;i<n;i++)
{if(a[i]>=n)break;
if(a[i]>m)ans++;
}
System.out.print(ans);
}}
转存失败重新上传取消