呱呱呱教程其二

线性回归

给定数据集 D = { ( x 1 , y 1 ) … ( x i , y i ) … ( x n , y n ) } D=\left\{ (\mathfrak{x}^1, y^1) \dots (\mathfrak{x}^i, y^i) \dots (\mathfrak{x}^n, y^n) \right\} D={(x1,y1)(xi,yi)(xn,yn)},线性回归试图学得 f ( x i ) = w x i + b f(\mathfrak{x}^i) =w\mathfrak{x}^i + b f(xi)=wxi+b 使得 f ( x i ) ≈ y i f(\mathfrak{x}^i) \approx y^i f(xi)yi
其中,运用最小二乘的方法确定公式中的 w w w b b b
( w ∗ , b ∗ ) = a r g min ⁡ w , b ∑ i = 1 n ( f ( x i ) − y i ) (w^*,b^*) = \underset{w,b}{arg \min}\sum_{i=1}^{n}\bigl( f(\mathfrak{x}^i) - y^i \bigr) (w,b)=w,bargmini=1n(f(xi)yi)
通过对公式中的 w w w b b b 求偏导且另其值为 0 可构建方程组,通过求解该方程组可得(公式敲起来真滴费劲)

不想敲公式了
在这里插入图片描述
将公式中的 x \mathfrak{x} x换成矩阵,则可得到
在这里插入图片描述

对数几率回归

对数几率函数:
在这里插入图片描述
其中 z z z w T x + b w^Tx+b wTx+b,其可以变化为:
ln ⁡ y y − 1 = w T x + b \ln \frac{y}{y-1} = w^T x + b lny1y=wTx+b

该公式可以写为:
ln ⁡ p ( y = 1 ∣ x ) p ( y = 0 ∣ x ) = w T x + b \ln \frac{p(y=1|x)}{p(y=0|x)} = w^T x + b lnp(y=0∣x)p(y=1∣x)=wTx+b
因此可以用最大似然的方法对公式中的 w w w b b b 进行估计。可以得到:
l ( w , b ) = ∑ i = 1 m ln ⁡ p ( y i ∣ x i ; w , b ) l(w,b) = \sum_{i=1}^{m} \ln p(y_i | x_i;w,b) l(w,b)=i=1mlnp(yixi;w,b)
通过计算得到最大的概率可以获得。
通过令 β = ( w ; b ) , x ^ = ( x ; 1 ) \beta = (w;b),\hat x = (x;1) β=(w;b),x^=(x;1) 公式 w T x + b w^Tx + b wTx+b 可以变换为 β T x ^ \beta^T \hat x βTx^ 。再令 p 1 ( x ^ ; β ) = p ( y = 1 ∣ x ^ ; β ) p_1(\hat x;\beta) = p(y=1|\hat x;\beta) p1(x^;β)=p(y=1∣x^;β) p 0 ( x ^ ; β ) = p ( y = 0 ∣ x ^ ; β ) p_0(\hat x;\beta) = p(y=0|\hat x;\beta) p0(x^;β)=p(y=0∣x^;β)则可得到

ln ⁡ p ( y i ∣ x i ; w , b ) = y i p 1 ( x ^ i ; β ) + ( 1 − y i ) p 0 ( x ^ i ; β ) \ln p(y_i | x_i;w,b) = y_ip_1(\hat x_i;\beta) + (1-y_i)p_0(\hat x_i;\beta) lnp(yixi;w,b)=yip1(x^i;β)+(1yi)p0(x^i;β)
则最大化公式可以变为:
l ( β ) = ∑ i = 1 m ( − y i β T x i ^ + ln ⁡ ( 1 + e β T x i ^ ) ) l(\beta) = \sum_{i=1}^{m}\bigl( -y_i \beta ^T \hat{x_i} + \ln(1 + e^{\beta ^T \hat{x_i}}) \bigr) l(β)=i=1m(yiβTxi^+ln(1+eβTxi^))
可以通过牛顿迭代法求解该式。

线性判别分析

多分类学习

多分类问题可以被拆解为若干个二分类问题,并最终拼接为一个多分类问题。
对于拆解的方法主要包括:一对一(OvO),一对其余(OvR),多对多(MvM)。

纠错输出码技术

将编码的思想引入类别拆分,使得在编码过程中具有较高的容错性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值