自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

会AI的学姐

学姐带你学AI,一起攻克YOLO;

  • 博客(367)
  • 收藏
  • 关注

原创 《YOLOv8创新改进》专栏指导书册 &手把手创新教程

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

2023-11-23 10:19:53 2269 2

原创 《YOLOv8-seg改进》专栏指导书册 &手把手创新教程

学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;1)手把手教你如何训练YOLOv8-seg;2)模型创新,提升分割性能;3)独家自研模块助力分割;

2023-11-20 14:18:20 2852 1

原创 YOLO11改进:多尺度提取能力 | 全局到局部可控感受野模块GL-CRM ,量身为为多尺度变化而设计

结合YOLO11 C3k2,实现二次创新,具备多尺度提取能力

2025-06-13 09:54:45 130

原创 YOLO11-Seg优化:多尺度提取能力 | 全局到局部可控感受野模块GL-CRM ,量身为为多尺度变化而设计

如何使用:结合YOLO11 C3k2,实现二次创新,具备多尺度提取能力

2025-06-13 09:54:41 9

原创 YOLO11-Seg优化:注意力独家魔改 | 可变形双级路由注意力(DBRA) ,魔改BRA注意力

提出了可变形双级路由注意力(DBRA)模块,该模块使用代理查询优化键值对的选择,并增强了注意力图中查询的解释性。

2025-06-13 09:42:56 8

原创 YOLO11-Seg优化:注意力魔改 | 具有切片操作的SimAM注意力,魔改SimAM

问题点:SimAM计算整张特征图的像素差平均值时加权可能会忽略小目标的重要性,同时与整体平均值相比可能和背景信息相似,导致加权增强较弱;

2025-06-13 09:39:01 8

原创 YOLO11-Seg优化:注意力魔改 | 一种新颖的高效融合注意力机制,2025年最新发表

提出了一种新颖的高效融合注意力机制,增强了模型的特征提取能力,同时减少通道和空间位置的冗余。

2025-06-13 09:36:32 5

原创 YOLO11-Seg优化:注意力魔改 | 一种新的空间和通道协同注意模块(SCSA)

提出了一种新的空间和通道协同注意模块(SCSA),解决了缺乏充分利用多语义信息的协同潜力来进行特征引导和缓解语义差异的问题。

2025-06-13 09:32:34 7

原创 YOLO11-Seg优化:注意力魔改 | 蒙特卡罗注意力(MCAttn)模块,基于尺度变化的注意力网络

提出了一种新的基于尺度变化的注意力网络,用于小尺度目标检测分割。

2025-06-12 15:54:59 12

原创 YOLO11-Seg优化:backbone主干改进 | 微软新作StarNet:超强轻量级Backbone | CVPR 2024

如何跟YOLO11结合:1)直接替换backbone

2025-06-12 15:50:51 10

原创 YOLO11-Seg优化:卷积魔改 | 变形条状卷积,魔改DCNv3二次创新

创新点:1)去掉DCNv3中的Mask;2)空间域上的双线性插值转改为轴上的线性插值;

2025-06-12 15:47:58 12

原创 YOLO11-Seg优化:特征融合创新 | 一种基于内容引导注意力(CGA)的混合融合, IEEE TIP 2024 浙大

提出了一种基于内容引导注意力(CGA)的混合融合方案,将编码器部分的低级特征与相应的高级特征有效融合。

2025-06-12 15:44:26 10

原创 YOLO11-Seg优化:轻量级改进 | 通用倒瓶颈(UIB)搜索块结合C3k2二次创新 | 轻量化之王MobileNetV4

如何跟YOLO11结合:通用倒瓶颈(UIB)搜索块替代YOLO11的C3k2

2025-06-12 15:41:45 6

原创 YOLO11-Seg优化:backbone主干改进| 轻量化之王MobileNetV4,秒杀Mobile系列

替代YOLO11  backbone

2025-06-12 10:12:14 15

原创 YOLO11-Seg优化:卷积变体系列篇 |动态卷积 DynamicConv, CVPR2024 ParameterNet 低计算量小模型也能从视觉大规模预训练中获益

动态卷积引入到YOLO11,直接替换原始的Conv操作:

2025-06-12 10:06:21 14

原创 YOLO11-Seg优化:小目标涨点篇 | 维度感知选择性集成注意力模块DASI,红外小目标暴力涨点

为了解决检测目标微小以及小目标图像中通常具有复杂的背景的问题点,提出了一种新颖的维度感知选择性集成模块DASI

2025-06-12 10:00:42 12

原创 YOLO11-Seg优化:小目标涨点系列 | 并行化注意力设计(PPA)模块,红外小目标暴力涨点

并行化 patch-aware 注意力(PPA)模块小目标涨点利器,在多个数据集下进行验证,解决微小目标具有复杂背景难识别的问题

2025-06-12 09:38:33 13

原创 YOLO11-Seg优化:block优化 | PKIBlock多尺度卷积核,助力小目标涨点 | CVPR2024 PKINet

PKINet利用不同大小的多个深度卷积核,优势:无需膨胀即可提取不同感受野中的多尺度纹理特征,改进思路来自CVPR2024 PKINet,2024年前沿最新改进

2025-06-12 09:33:26 8

原创 YOLO11-Seg优化:block涨点系列 | RepViTBlock合适的卷积核大小和优化挤压-激励大幅提升检测精度 | CVPR2024清华RepViT

在多个私有数据集和公开数据集验证能够涨点

2025-06-12 09:28:00 12

原创 YOLO11-Seg优化:上采样系列篇 | 超轻量高效率动态上采样算子DySample,效果优于CARAFE等

一种超轻量高效动态上采样DySample, 具有更少的参数、FLOPs,效果秒杀CAFFE和 nn.Upsample

2025-06-12 09:24:23 9

原创 YOLO11-Seg优化:小目标涨点系列 | 多分支卷积模块RFB,扩大感受野提升小目标分割精度

多分支卷积模块RFB,扩大感受野提升小目标分割精度

2025-06-12 09:19:45 11

原创 YOLO11-Seg优化:小目标涨点系列| 多尺度感受野特征的可扩张残差(DWR)注意力模块

一种新颖的可扩张残差(DWR)注意力模块,加强不同尺度特征提取能力

2025-06-12 09:02:17 8

原创 YOLO11-Seg优化:分层特征融合策略MSBlock | YOLO-MS ,超越YOLOv8与RTMDet,即插即用打破性能瓶颈

分层特征融合策略MSBlock,即插即用打破性能瓶颈

2025-06-12 08:56:27 11

原创 YOLO11-Seg优化:注意力涨点系列篇 | 一种轻量级的加强通道信息和空间信息提取能力的MLCA注意力

一种轻量级的加强通道信息和空间信息提取能力 MLCA注意力

2025-06-12 08:53:04 9

原创 YOLO11-Seg优化:特征融合系列篇 | 多尺度特征融合iAFF,提升小目标检测能力 | 轻量级创新高效结合GhostConv

引入了一种新颖的多尺度特征融合iAFF

2025-06-12 08:50:41 8

原创 YOLO11-Seg优化:卷积创新 | 种更高效,更快的可变形卷积(DCNv4),解决DCNv3的局限性,速度提升3倍以上 | OpenGVLab/商汤等联合提出DCNv4

DCNv4具有更快实现的实现和改进的操作符设计,以提高其性能

2025-06-12 08:47:17 129

原创 YOLO11-Seg优化:注意力系列篇 | 小目标涨点系列篇 | 新型的多尺度卷积注意力(MSCA)模块

MSCA多尺度特性在小目标分割领域表现优异

2025-06-12 08:44:14 8

原创 YOLO11-Seg优化:注意力系列篇 | 高效的通道先验卷积注意力(CPCA) | 中科院

CPCA 小目标分割&复杂场景首选,实现涨点

2025-06-12 08:37:40 10

原创 YOLO11-Seg优化:轻量级Backbone改进 | UniRepLKNet,通用感知大内核卷积网络,RepLK改进版本

UniRepLKNet,通用感知大内核卷积网络,ImageNet-22K预训练,精度和速度SOTA,ImageNet达到88%, COCO达到56.4 box AP,ADE20K达到55.6 mIoU

2025-06-11 10:39:34 21

原创 YOLO11-Seg优化:block优化 | 简单高效的模块-现代反向残差移动模块 (iRMB) | ICCV2023 EMO

设计了一种面向移动端应用的简单而高效的现代反向残差移动模块 (iRMB),它吸收了类似 CNN 的效率来模拟短距离依赖和类似 Transformer 的动态建模能力来学习长距离交互,引入YOLO11-seg

2025-06-11 10:36:22 13

原创 YOLO11-Seg优化:卷积魔改 | 自适应改变核大小卷积AKConv,效果优于标准卷积核和DSConv

AKConv 中,通过新的坐标生成算法定义任意大小的卷积核的初始位置。 为了适应目标的变化,引入了偏移量来调整每个位置的样本形状

2025-06-11 10:33:53 17

原创 YOLO11-Seg优化:轻量级Backbone改进 | VanillaNet极简神经网络模型 | 华为诺亚2023

一种极简的神经网络模型 VanillaNet,支持vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11等版本

2025-06-11 10:31:09 15

原创 YOLO11-Seg优化:注意力系列篇 | 小目标涨点系列篇 | 多尺度空洞注意力(MSDA) | 中科院一区顶刊

如何在YOLO11-seg下使用:1)作为注意力机制放在各个网络位置;

2025-06-11 10:28:45 12

原创 YOLO11-Seg优化:Neck改进系列 | Gold-YOLO,信息聚集-分发(Gather-and-Distribute Mechanism)机制 | 华为诺亚NeurIPS23

Gold-YOLO在不同场景均有涨点的表现

2025-06-11 10:26:14 15

原创 YOLO11-Seg优化:卷积变体系列篇 | PConv,减少冗余计算和内存访问可以更有效地提取空间特征 | CVPR2023 FasterNet

PConv,减少冗余计算和内存访问可以更有效地提取空间特征,引入到YOLO11,结合C3k2实现二次创新;

2025-06-11 10:23:39 11

原创 YOLO11-Seg优化:小目标涨点系列篇 | 轻量级上采样CARAFE算子,助力小目标分割

轻量级上采样CARAFE算子,引入到YOLO11-seg,neck处 Upsanple替换为CARAFE

2025-06-11 10:21:04 14

原创 YOLO11-Seg优化:SPPF系列改进篇 | 大核分离卷积注意力模块( Large Separable Kernel Attention)

Large Separable Kernel Attention 亲测在多个数据集能够实现涨点,同样适用于小目标分割

2025-06-11 10:18:39 11

原创 YOLO11-Seg优化:注意力系列篇 | 小目标涨点系列篇 | 上下文增强和特征细化注意力ContextAggregation

多头上下文集成(Context Aggregation)的广义构建模块 ,引入YOLO11-seg二次创新;

2025-06-11 10:15:46 15

原创 YOLO11-Seg优化:小目标涨点系列篇 | 小目标到大目标一网打尽的GFPN

一种新的路径融合GFPN,包含跳层与跨尺度连接,助力YOLOv10-seg Neck,实现创新

2025-06-11 10:12:51 12

原创 YOLO11-Seg优化:Block涨点系列篇 | 极简的神经网络模型模块VanillaBlock | 华为诺亚2023

VanillaBlock保持轻量级的同时能够小幅涨点,与YOLO11-seg输出层结合

2025-06-11 10:05:22 14

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除