RT-DETR优化改进:上采样系列篇 | 超轻量高效率动态上采样算子DySample,效果优于CARAFE、FADE和SAPA等

本文介绍了DySample,一种轻量高效的动态上采样方法,优于CARAFE、FADE和SAPA。DySample避免了动态卷积,减少了参数、FLOPs和GPU内存,同时在多个密集预测任务上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🚀🚀🚀本文改进:一种超轻量高效动态上采样DySample, 具有更少的参数、FLOPs,效果秒杀CAFFE和 nn.Upsample

 🚀🚀🚀RT-DETR改进创新专栏:http://t.csdnimg.cn/vuQTz

🚀🚀🚀学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研;

🚀🚀🚀RT-DETR模型创新优化,涨点技巧分享,科研小助手;

1.原理介绍

 论文:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值