YOLOv10改进:注意力系列篇 | 动态稀疏注意力(BiLevelRoutingAttention) | CVPR2023

本文介绍了YOLOv10的改进,特别是引入了动态稀疏注意力机制——BiLevelRoutingAttention(BRA)。BRA通过双层路由实现更灵活的计算分配和内容感知,提升小目标检测性能。YOLOv10的优化还包括C2fUIB和PSA,旨在提高效率和精度。通过修改源码,将BRA整合到YOLOv10中,实现在多个数据集上的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🚀🚀🚀本文改进:动态稀疏注意力(BiLevelRoutingAttention),实现更灵活的计算分配内容感知,使其具备动态的查询感知稀疏性,改进方法:1)动态稀疏注意力替换 PSA中的多头自注意力模块MHSA注意力;2) 动态稀疏注意力直接替换 PSA;

🚀🚀🚀BiLevelRoutingAttention  亲测在多个数据集能够实现涨点,同样适用于小目标检测

改进1结构图:

改进2结构图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会AI的学姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值