2023最新全栈综述汇总!自动驾驶与CV综述/视频下载!

自动驾驶与AI整理了领域方向的一些综述、经典论文进行汇总,供大家学习。主要涉及目标检测、语义分割、全景/实例分割、目标跟踪、Transformer、关键点检测、深度估计、3D检测、多模态融合、车道线检测、多传感器数据融合、SLAM与高精地图等方向!

公众号后台回复【自动驾驶全栈】

获取所有干货下载链接!

数据集汇总

KITTI、COCO、Cityscape、BDD100K、MOT15/16/17/20、NuScenes等!

ae74db16d461bb71db95c8a849342a45.png

视频教程

哥伦比亚大学最新单目相机标定、立体视觉教程!

a6ef5a428c1e1f6c44123f94b659685d.png

多模态融合

针对Lidar、Radar、视觉等数据方案进行融合感知;

  1. A Survey on Deep Domain Adaptation for LiDAR Perception

  2. Automatic Target Recognition on Synthetic Aperture Radar Imagery:A Survey

  3. Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving:Datasets, Methods, and Challenges

  4. MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving:A Review

  5. Multi-Modal 3D Object Detection in Autonomous Driving:A Survey

  6. Multi-modal Sensor Fusion for Auto Driving Perception:A Survey

  7. Multi-Sensor 3D Object Box Refinement for Autonomous Driving

  8. Multi-View Fusion of Sensor Data for Improved Perception and Prediction in Autonomous Driving

3D检测

对基于单目图像、双目图像、点云数据、多模态数据的3D检测方法进行了梳理;

  1. 3D Object Detection for Autonomous Driving:A Review and New Outlooks

  2. 3D Object Detection from Images for Autonomous Driving A Survey

  3. A Survey of Robust LiDAR-based 3D Object Detection Methods for autonomous driving

  4. A Survey on 3D Object Detection Methods for Autonomous Driving Applications

  5. Deep Learning for 3D Point Cloud Understanding:A Survey

  6. Multi-Modal 3D Object Detection in Autonomous Driving:a survey

  7. Survey and Systematization of 3D Object Detection Models and Methods

目标检测综述

主要涉及通用目标检测任务、检测任务中的数据不均衡问题、伪装目标检测、自动驾驶领域检测任务、anchor-based、anchor-free、one-stage、two-stage方案等;

  1. A Survey of Deep Learning for Low-Shot Object Detection

  2. A Survey of Deep Learning-based Object Detection

  3. Camouflaged Object Detection and Tracking:A Survey

  4. Deep Learning for Generic Object Detection:A Survey

  5. Imbalance Problems in Object Detection:A survey

  6. Object Detection in 20 Years:A Survey

  7. Object Detection in Autonomous Vehicles:Status and Open Challenges

  8. Recent Advances in Deep Learning for Object Detection

目标检测数据增强与不均衡问题

主要涉及目标检测任务中的数据增强、小目标检测、小样本学习、autoargument等工作;

  1. A survey on Image Data Augmentation for Deep Learning

  2. Augmentation for small object detection

  3. Bag of Freebies for Training Object Detection Neural Networks

  4. Generalizing from a Few Examples:A Survey on Few-Shot

  5. Learning Data Augmentation Strategies for Object Detection

分割综述

主要对实时图像分割、视频分割、实例分割、弱监督/无监督分割、点云分割等方案展开讨论;

  1. A Review of Point Cloud Semantic Segmentation

  2. A SURVEY ON DEEP LEARNING METHODS FOR SEMANTIC IMAGE SEGMENTATION IN REAL-TIME

  3. A SURVEY ON DEEP LEARNING METHODS FOR SEMANTIC

  4. A Survey on Deep Learning Technique for Video Segmentation

  5. A Survey on Instance Segmentation State of the art

  6. A Survey on Label-efficient Deep Segmentation-Bridging the Gap between Weak Supervision and Dense Prediction

  7. A Technical Survey and Evaluation of Traditional Point Cloud Clustering  for LiDAR Panoptic Segmentation

  8. Evolution of Image Segmentation using Deep Convolutional Neural Network A Survey

  9. On Efficient Real-Time Semantic Segmentation

  10. Unsupervised Domain Adaptation for Semantic Image Segmentation-a Comprehensive Survey

多任务学习

对检测+分割+关键点+车道线联合任务训练方法进行了汇总;

  1. Cascade R-CNN

  2. Deep Multi-Task Learning for Joint Localization, Perception, and Prediction

  3. Mask R-CNN

  4. Mask Scoring R-CNN

  5. Multi-Task Multi-Sensor Fusion for 3D Object Detection

  6. MultiTask-CenterNet

  7. OmniDet

  8. YOLOP

  9. YOLO-Pose

目标跟踪

对单目标和多目标跟踪、滤波和端到端方法进行了汇总;

  1. Camouflaged Object Detection and Tracking:A Survey

  2. Deep Learning for UAV-based Object Detection and Tracking:A Survey

  3. Deep Learning on Monocular Object Pose Detection and Tracking:A Comprehensive Overview

  4. Detection, Recognition, and Tracking:A Survey

  5. Infrastructure-Based Object Detection and Tracking for Cooperative Driving Automation:A Survey

  6. Recent Advances in Embedding Methods for Multi-Object Tracking:A Survey

  7. Single Object Tracking:A Survey of Methods, Datasets, and Evaluation Metrics

  8. Visual Object Tracking with Discriminative Filters and Siamese Networks:A Survey and Outlook

深度估计

针对单目、双目深度估计方法进行了汇总,对户外常见问题与精度损失展开了讨论;

  1. A Survey on Deep Learning Techniques for Stereo-based Depth Estimation

  2. Deep Learning based Monocular Depth Prediction:Datasets, Methods and Applications

  3. Monocular Depth Estimation Based On Deep Learning:An Overview

  4. Monocular Depth Estimation:A Survey

  5. Outdoor Monocular Depth Estimation:A Research Review

  6. Towards Real-Time Monocular Depth Estimation for Robotics:A Survey

关键点检测

人体关键点检测方法汇总,对车辆关键点检测具有一定参考价值;

  1. 2D Human Pose Estimation:A Survey

  2. A survey of top-down approaches for human pose estimation

  3. Efficient Annotation and Learning for 3D Hand Pose Estimation:A Survey

  4. Recent Advances in Monocular 2D and 3D Human Pose Estimation:A Deep Learning Perspective

Transformer综述

视觉transformer、轻量级transformer方法汇总;

  1. A Survey of Visual Transformers

  2. A Survey on Visual Transformer

  3. Efficient Transformers:A Survey

车道线检测

对2D/3D车道线检测方法进行了汇总,基于分类、检测、分割、曲线拟合等;

2D车道线

  1. A Keypoint-based Global Association Network for Lane Detection

  2. CLRNet:Cross Layer Refinement Network for Lane Detection

  3. End-to-End Deep Learning of Lane Detection and Path Prediction for Real-Time Autonomous Driving

  4. End-to-end Lane Detection through Differentiable Least-Squares Fitting

  5. Keep your Eyes on the Lane:Real-time Attention-guided Lane Detection

  6. LaneNet:Real-Time Lane Detection Networks for Autonomous Driving

  7. Towards End-to-End Lane Detection:an Instance Segmentation Approach

  8. Ultra Fast Structure-aware Deep Lane Detection

3D车道线

  1. 3D-LaneNet+:Anchor Free Lane Detection using a Semi-Local Representation

  2. Deep Multi-Sensor Lane Detection

  3. FusionLane:Multi-Sensor Fusion for Lane Marking Semantic Segmentation Using Deep Neural Networks

  4. Gen-LaneNet:A Generalized and Scalable Approach for 3D Lane Detection

  5. ONCE-3DLanes:Building Monocular 3D Lane Detection

  6. 3D-LaneNet:End-to-End 3D Multiple Lane Detection

SLAM综述

定位与建图方案汇总;

  1. A Survey on Active Simultaneous Localization and Mapping-State of the Art and New Frontiers

  2. The Revisiting Problem in Simultaneous Localization and Mapping-A Survey on Visual Loop Closure Detection

  3. From SLAM to Situational Awareness-Challenges

  4. Simultaneous Localization and Mapping Related Datasets-A Comprehensive Survey

模型量化

  1. A Survey on Deep Neural Network CompressionChallenges, Overview, and Solutions

  2. Pruning and Quantization for Deep Neural Network Acceleration ASurvey

视频课程来了!

自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)

5448a72bc35b6f79f1c0e633c615cc01.png

(扫码学习最新视频)

国内首个自动驾驶学习社区

近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

16b9ac68afc719ecdff15a134ae5fa40.jpeg

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;

ea3bc56ae6afe7d413e644fc2bcfc214.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值